130 research outputs found

    Recombinant Human Insulin in Global Diabetes Management – Focus on Clinical Efficacy

    Get PDF
    Biosynthetic human insulin and insulin analogues are the mainstay of insulin therapy for both type 1 and type 2 diabetes although access to human insulin at affordable prices remains a global issue. The world is experiencing an exponential rise in the prevalence of diabetes presenting an urgent need to establish effective diabetes therapy in countries burdened by inadequate health care budgets, malnutrition and infectious diseases. Recombinant human insulin has replaced animal insulins and animal-based semisynthetic human insulin thereby available in sufficient quantities and at affordable prices able to provide global access to insulin therapy. In many patients, analog insulins can offer additional clinical benefit, although at a considerably higher price thus severely restricting availability in low income countries. The approval process for recombinant human insulins (i.e. biosimilars) and analogue insulins is highly variable in the developing countries in contrast to Europe and in North America, where it is well established within a strict regulatory framework. This review aims to discuss the future access to human insulin therapy in a global context with an ever increasing burden of diabetes and significant economic implications

    BRCA2 Mutations and Triple-Negative Breast Cancer

    Get PDF
    Recently, BRCA1 germline mutations were found in a high proportion (14–34%) of patients with triple-negative breast cancer (TNBC). BRCA2 was either not analyzed or showed much lower mutation frequencies. Therefore, we screened a group of TNBC patients (n = 30) of white European descent for mutations in BRCA2 as well as in BRCA1. Cases were unselected for age of disease-onset (median age at breast cancer diagnosis was 58 years, ranging from 37 to 74 years), family history of cancer and BRCA1 and BRCA2 mutation status. Half of the patients (15/30) showed a family history of breast and/or ovarian cancer. A high frequency of deleterious germline mutations was observed in BRCA2 (5/30; 16.7%), and only one case showed a BRCA1 mutation (3.3%). Although the study group was small, these results point to BRCA2 mutations being important in TNBC

    Insulin glargine compared with premixed insulin for management of insulin-naĂŻve type 2 diabetes patients uncontrolled on oral antidiabetic drugs : the open-label, randomized GALAPAGOS study

    Get PDF
    Q3Q1Aims: Demonstrate superiority of insulin glargine (±glulisine) strategy versus premixed insulin strategy for percentage of patients reaching HbA1c b7% (b53 mmol/mol) at study end without any documented symptomatic hypoglycemia (bloof glucose [BG] ≀3.1 mmol/L) in type 2 diabetes (T2DM) patients failing oral agents. Methods: This 24-week, open-label, multinational trial randomized patients to glargine OD or premix OD or BID, continuing metformin ± insulin secretagogue (IS). Second premix injection could be added any time; glulisine could be added with main meal in glargine OD patients with HbA1c ≄7% and fasting blood glucose (FBG) b7 mmol/L at week 12. IS was stopped with any second injection. Insulin titration targeted FBG ≀5.6 mmol/L. Results: Modifiedintent-to-treat population comprised 923 patients (glargine, 462; premix, 461). Baseline characteristics were similar (mean T2DM duration: 9 years; HbA1c: 8.7% (72 mmol/mol); FBG: 10.4 mmol/L). Primary endpoint was achieved by 33.2% of glargine (±glulisine) and 31.4% of premix patients. Superiority was not demonstrated, but non-inferiority was (pre-specifiedmargin: 25% of premix rate). More patients using premix achieved target (52.6% vs. 43.2%, p = 0.005); symptomatic hypoglycemia was less with glargine (1.17 vs. 2.93 events/patient–year). Conclusions: Glargine (±glulisine) and premix strategies resulted in similar percentages of well-controlled patients without hypoglycemia, with more patients achieving target HbA1c with premix whereas overall symptomatic hypoglycemia was less with glargine.N/

    Distribution and characteristics of newly-defined subgroups of type 2 diabetes in randomised clinical trials : Post hoc cluster assignment analysis of over 12,000 study participants

    Get PDF
    Publisher Copyright: © 2022Aims: Newly-defined subgroups of type 2 diabetes mellitus (T2DM) have been reported from real-world cohorts but not in detail from randomised clinical trials (RCTs). Methods: T2DM participants, uncontrolled on different pre-study therapies (n = 12.738; 82 % Caucasian; 44 % with diabetes duration > 10 years) from 14 RCTs, were assigned to new subgroups according to age at onset of diabetes, HbA1c, BMI, and fasting C-peptide using the nearest centroid approach. Subgroup distribution, characteristics and influencing factors were analysed. Results: In both, pooled and single RCTs, “mild-obesity related diabetes” predominated (45 %) with mean BMI of 35 kg/m2. “Severe insulin-resistant diabetes” was found least often (4.6 %) and prevalence of “mild age-related diabetes” (23.9 %) was mainly influenced by age at onset of diabetes and age cut-offs. Subgroup characteristics were widely comparable to those from real-world cohorts, but all subgroups showed higher frequencies of diabetes-related complications which were associated with longer diabetes duration. A high proportion of “severe insulin-deficient diabetes” (25.4 %) was identified with poor pre-study glycaemic control. Conclusions: Classification of RCT participants into newly-defined diabetes subgroups revealed the existence of a heterogeneous population of T2DM. For future RCTs, subgroup-based randomisation of T2DM will better define the target population and relevance of the outcomes by avoiding clinical heterogeneity.Peer reviewe

    Photodynamic Inactivation of Bacteria in Ionic Environments Using the Photosensitizer SAPYR and the Chelator Citrate

    Get PDF
    Many studies show that photodynamic inactivation (PDI) is a powerful tool for the fight against pathogenic, multiresistant bacteria and the closing of hygiene gaps. However, PDI studies have been frequently performed under standardized in vitro conditions comprising artificial laboratory settings. Under real-life conditions, however, PDI encounters substances like ions, proteins, amino acids and fatty acids, potentially hampering the efficacy of PDI to an unpredictable extent. Thus, we investigated PDI with the phenalene-1-one-based photosensitizer SAPYR against Escherichia coli and Staphylococcus aureus in the presence of calcium or magnesium ions, which are ubiquitous in potential fields of PDI applications like in tap water or on tissue surfaces. The addition of citrate should elucidate the potential as a chelator. The results indicate that PDI is clearly affected by such ubiquitous ions depending on its concentration and the type of bacteria. The application of citrate enhanced PDI, especially for Gram-negative bacteria at certain ionic concentrations (e.g. CaCl2 or MgCl2: 7.5 to 75 mmol L−1). Citrate also improved PDI efficacy in tap water (especially for Gram-negative bacteria) and synthetic sweat solution (especially for Gram-positive bacteria). In conclusion, the use of chelating agents like citrate may facilitate the application of PDI under real-life conditions

    Photodynamic inactivation of different pathogenic bacteria on human skin using a novel photosensitizer hydrogel

    Get PDF
    Background The colonization of skin with pathogenic, partially antibiotic-resistant bacteria is frequently a severe problem in dermatological therapies. For instance, skin colonization with Staphylococcus aureus is even a disease-promoting factor in atopic dermatitis. The photodynamic inactivation (PDI) of bacteria could be a new antibacterial procedure. Upon irradiation with visible light, a special photosensitizer exclusively generates singlet oxygen. This reactive oxygen species kills bacteria via oxidation independent of species or strain and their antibiotic resistance profile causing no bacterial resistance on its part. Objective To investigate the antibacterial potential of a photosensitizer, formulated in a new hydrogel, on human skin ex vivo. Methods The photochemical stability of the photosensitizer and its ability to generate singlet oxygen in the hydrogel was studied. Antimicrobial efficacy of this hydrogel was tested step by step, firstly on inanimate surfaces and then on human skin ex vivo against S. aureus and Pseudomonas aeruginosa using standard colony counting. NBTC staining and TUNEL assays were performed on skin biopsies to investigate potential necrosis and apoptosis effects in skin cells possibly caused by PDI. Results None of the hydrogel components affected the photochemical stability and the life time of singlet oxygen. On inanimate surfaces as well as on the human skin, the number of viable bacteria was reduced by up to 4.8 log10 being more effective than most other antibacterial topical agents. Histology and assays showed that PDI against bacteria on the skin surface caused no harmful effects on the underlying skin cells. Conclusion Photodynamic inactivation hydrogel proved to be effective for decolonization of human skin including the potential to act against superficial skin infections. Being a water-based formulation, the hydrogel should be also suitable for the mucosa. The results of the present ex vivo study form a good basis for conducting clinical studies in vivo

    Inhibitory effects of calcium or magnesium ions on PDI

    Get PDF
    Photodynamic inactivation of microorganisms (PDI) finds use in a variety of applications. Several studies report on substances enhancing or inhibiting PDI. In this study, we analyzed the inhibitory potential of ubiquitous salts like CaCl2 and MgCl2 on PDI against Staphylococcus aureus and Pseudomonas aeruginosa cells using five cationic photosensitizers methylene blue, TMPyP, SAPYR, FLASH-02a and FLASH-06a. TMPyP changed its molecular structure when exposed to MgCl2, most likely due to complexation. CaCl2 substantially affected singlet oxygen generation by MB at small concentrations. Elevated concentrations of CaCl2 and MgCl2 impaired PDI up to a total loss of bacterial reduction, whereas CaCl2 is more detrimental for PDI than MgCl2. Binding assays cannot not explain the differences of PDI efficacy. It is assumed that divalent ions tightly bind to bacterial cells hindering close binding of the photosensitizers to the membranes. Consequently, photosensitizer binding might be shifted to outer compartments like teichoic acids in Gram-positives or outer sugar moieties of the LPS in Gram-negatives, attenuating the oxidative damage of susceptible cellular structures. In conclusion, CaCl2 and MgCl2 have an inhibitory potential at different phases in PDI. These effects should be considered when using PDI in an environment that contains such salts like in tap water or different fields of food industry
    • 

    corecore