192 research outputs found
TDT-HET: A new transmission disequilibrium test that incorporates locus heterogeneity into the analysis of family-based association data
<p>Abstract</p> <p>Background</p> <p>Locus heterogeneity is one of the most documented phenomena in genetics. To date, relatively little work had been done on the development of methods to address locus heterogeneity in genetic association analysis. Motivated by Zhou and Pan's work, we present a mixture model of linked and unlinked trios and develop a statistical method to estimate the probability that a heterozygous parent transmits the disease allele at a di-allelic locus, and the probability that any trio is in the linked group. The purpose here is the development of a test that extends the classic transmission disequilibrium test (<it>TDT</it>) to one that accounts for locus heterogeneity.</p> <p>Results</p> <p>Our simulations suggest that, for sufficiently large sample size (1000 trios) our method has good power to detect association even the proportion of unlinked trios is high (75%). While the median difference (<it>TDT-HET </it>empirical power - <it>TDT </it>empirical power) is approximately 0 for all MOI, there are parameter settings for which the power difference can be substantial. Our multi-locus simulations suggest that our method has good power to detect association as long as the markers are reasonably well-correlated and the genotype relative risk are larger. Results of both single-locus and multi-locus simulations suggest our method maintains the correct type I error rate.</p> <p>Finally, the <it>TDT-HET </it>statistic shows highly significant p-values for most of the idiopathic scoliosis candidate loci, and for some loci, the estimated proportion of unlinked trios approaches or exceeds 50%, suggesting the presence of locus heterogeneity.</p> <p>Conclusions</p> <p>We have developed an extension of the <it>TDT </it>statistic (<it>TDT-HET</it>) that allows for locus heterogeneity among coded trios. Benefits of our method include: estimates of parameters in the presence of heterogeneity, and reasonable power even when the proportion of linked trios is small. Also, we have extended multi-locus methods to <it>TDT-HET </it>and have demonstrated that the empirical power may be high to detect linkage. Last, given that we obtain PPBs, we conjecture that the <it>TDT-HET </it>may be a useful method for correctly identifying linked trios. We anticipate that researchers will find this property increasingly useful as they apply next-generation sequencing data in family based studies.</p
Common polymorphisms in human lysyl oxidase genes are not associated with the adolescent idiopathic scoliosis phenotype
BACKGROUND: Although adolescent idiopathic scoliosis affects approximately 3% of adolescents, the genetic contributions have proven difficult to identify. Work in model organisms, including zebrafish, chickens, and mice, has implicated the lysyl oxidase family of enzymes in the development of scoliosis. We hypothesized that common polymorphisms in the five human lysyl oxidase genes (LOX, LOXL1, LOXL2, LOXL3, and LOXL4) may be associated with the phenotype of adolescent idiopathic scoliosis. METHODS: This was a case-control genetic association study. A total of 112 coding and tag SNPs in LOX, LOXL1, LOXL2, LOXL3, and LOXL4 were genotyped in a discovery cohort of 138 cases and 411 controls. Genotypes were tested for association with adolescent idiopathic scoliosis by logistic regression with a two degree of freedom genotypic model and gender as a covariate. Fourteen SNPs with p < 0.1 in the discovery phase were genotyped in an independent replication cohort of 400 cases and 506 controls. RESULTS: No evidence for significant association was found between coding or tag SNPs in LOX, LOXL1, LOXL2, LOXL3, and LOXL4 and the phenotype of adolescent idiopathic scoliosis. CONCLUSIONS: Despite suggestive evidence in model organisms, common variants and known coding SNPs in the five human lysyl oxidase genes do not confer increased genotypic risk for adolescent idiopathic scoliosis. The above methodology does not address rare variants or individually private mutations in these genes, and future research may focus on this area
Altered transmission of HOX and apoptotic SNPs identify a potential common pathway for clubfoot.
Clubfoot is a common birth defect that affects 135,000 newborns each year worldwide. It is characterized by equinus deformity of one or both feet and hypoplastic calf muscles. Despite numerous study approaches, the cause(s) remains poorly understood although a multifactorial etiology is generally accepted. We considered the HOXA and HOXD gene clusters and insulin-like growth factor binding protein 3 (IGFBP3) as candidate genes because of their important roles in limb and muscle morphogenesis. Twenty SNPs from the HOXA and HOXD gene clusters and 12 SNPs in IGFBP3 were genotyped in a sample composed of non-Hispanic white and Hispanic multiplex and simplex families (discovery samples) and a second sample of non-Hispanic white simplex trios (validation sample). Four SNPs (rs6668, rs2428431, rs3801776, and rs3779456) in the HOXA cluster demonstrated altered transmission in the discovery sample, but only rs3801776, located in the HOXA basal promoter region, showed altered transmission in both the discovery and validation samples (P = 0.004 and 0.028). Interestingly, HOXA9 is expressed in muscle during development. An SNP in IGFBP3, rs13223993, also showed altered transmission (P = 0.003) in the discovery sample. Gene-gene interactions were identified between variants in HOXA, HOXD, and IGFBP3 and with previously associated SNPs in mitochondrial-mediated apoptotic genes. The most significant interactions were found between CASP3 SNPS and variants in HOXA, HOXD, and IGFBP3. These results suggest a biologic model for clubfoot in which perturbation of HOX and apoptotic genes together affect muscle and limb development, which may cause the downstream failure of limb rotation into a plantar grade position
Whole exome screening identifies novel and recurrent WISP3 mutations causing progressive pseudorheumatoid dysplasia in Jammu and Kashmir-India
We report identification and genetic characterization of a rare skeletal disorder that remained unidentified for decades in a village of Jammu and Kashmir, India. The population residing in this region is highly consanguineous and a lack of understanding of the disorder has hindered clinical management and genetic counseling for the many affected individuals in the region. We collected familial information and identified two large extended multiplex pedigrees displaying apparent autosomal recessive inheritance of an uncharacterized skeletal dysplasia. Whole exome sequencing (WES) in members of one pedigree revealed a rare mutation in WISP3:c.156C > A (NP-003871.1:p.Cys52Ter), that perfectly segregated with the disease in the family. To our surprise, Sanger sequencing the WISP3 gene in the second family identified a distinct, novel splice site mutation c.643+1G > A, that perfectly segregated with the disease. Combining our next generation sequencing data with careful clinical documentation (familial histories, genetic data, clinical and radiological findings), we have diagnosed the families with Progressive Pseudorheumatoid Dysplasia (PPD). Our results underscore the utility of WES in arriving at definitive diagnoses for rare skeletal dysplasias. This genetic characterization will aid in genetic counseling and management, critically required to curb this rare disorder in the families
The cartilage matrisome in adolescent idiopathic scoliosis
The human spinal column is a dynamic, segmented, bony, and cartilaginous structure that protects the neurologic system and simultaneously provides balance and flexibility. Children with developmental disorders that affect the patterning or shape of the spine can be at risk of neurologic and other physiologic dysfunctions. The most common developmental disorder of the spine is scoliosis, a lateral deformity in the shape of the spinal column. Scoliosis may be part of the clinical spectrum that is observed in many developmental disorders, but typically presents as an isolated symptom in otherwise healthy adolescent children. Adolescent idiopathic scoliosis (AIS) has defied understanding in part due to its genetic complexity. Breakthroughs have come from recent genome-wide association studies (GWAS) and next generation sequencing (NGS) of human AIS cohorts, as well as investigations of animal models. These studies have identified genetic associations with determinants of cartilage biogenesis and development of the intervertebral disc (IVD). Current evidence suggests that a fraction of AIS cases may arise from variation in factors involved in the structural integrity and homeostasis of the cartilaginous extracellular matrix (ECM). Here, we review the development of the spine and spinal cartilages, the composition of the cartilage ECM, the so-called "matrisome" and its functions, and the players involved in the genetic architecture of AIS. We also propose a molecular model by which the cartilage matrisome of the IVD contributes to AIS susceptibility
Clinical, Molecular, and Genetic Characteristics of PAPA Syndrome: A Review
PAPA syndrome (Pyogenic Arthritis, Pyoderma gangrenosum, and Acne) is an autosomal dominant, hereditary auto-inflammatory disease arising from mutations in the PSTPIP1/CD2BP1 gene on chromosome 15q. These mutations produce a hyper-phosphorylated PSTPIP1 protein and alter its participation in activation of the “inflammasome” involved in interleukin-1 (IL-1β) production. Overproduction of IL-1β is a clear molecular feature of PAPA syndrome. Ongoing research is implicating other biochemical pathways that may be relevant to the distinct pyogenic inflammation of the skin and joints characteristic of this disease. This review summarizes the recent and rapidly accumulating knowledge on these molecular aspects of PAPA syndrome and related disorders
CELSR2 is a candidate susceptibility gene in idiopathic scoliosis
A Swedish pedigree with an autosomal dominant inheritance of idiopathic scoliosis was initially studied by genetic linkage analysis, prioritising genomic regions for further analysis. This revealed a locus on chromosome 1 with a putative risk haplotype shared by all affected individuals. Two affected individuals were subsequently exome-sequenced, identifying a rare, non-synonymous variant in the CELSR2 gene. This variant is rs141489111, a c. G6859A change in exon 21 (NM_001408), leading to a predicted p. V2287I (NP_001399.1) change. This variant was found in all affected members of the pedigree, but showed reduced penetrance. Analysis of tagging variants in CELSR1-3 in a set of 1739 Swedish-Danish scoliosis cases and 1812 controls revealed significant association (p = 0.0001) to rs2281894, a common synonymous variant in CELSR2. This association was not replicated in case-control cohorts from Japan and the US. No association was found to variants in CELSR1 or CELSR3. Our findings suggest a rare variant in CELSR2 as causative for idiopathic scoliosis in a family with dominant segregation and further highlight common variation in CELSR2 in general susceptibility to idiopathic scoliosis in the Swedish-Danish population. Both variants are located in the highly conserved GAIN protein domain, which is necessary for the auto-proteolysis of CELSR2, suggesting its functional importance.Peer reviewe
RAB1A Haploinsufficiency Phenocopies the 2p14-p15 Microdeletion and Is Associated With Impaired Neuronal Differentiation
Hereditary spastic parapareses (HSPs) are clinically heterogeneous motor neuron diseases with variable age of onset and severity. Although variants in dozens of genes are implicated in HSPs, much of the genetic basis for pediatric-onset HSP remains unexplained. Here, we re-analyzed clinical exome-sequencing data from siblings with HSP of unknown genetic etiology and identified an inherited nonsense mutation (c.523C\u3eT [p.Arg175Ter]) in the highly conserved RAB1A. The mutation is predicted to produce a truncated protein with an intact RAB GTPase domain but without two C-terminal cysteine residues required for proper subcellular protein localization. Additional RAB1A mutations, including two frameshift mutations and a mosaic missense mutation (c.83T\u3eC [p.Leu28Pro]), were identified in three individuals with similar neurodevelopmental presentations. In rescue experiments, production of the full-length, but not the truncated, RAB1a rescued Golgi structure and cell proliferation in Rab1-depleted cells. In contrast, the missense-variant RAB1a disrupted Golgi structure despite intact Rab1 expression, suggesting a dominant-negative function of the mosaic missense mutation. Knock-down of RAB1A in cultured human embryonic stem cell-derived neurons resulted in impaired neuronal arborization. Finally, RAB1A is located within the 2p14-p15 microdeletion syndrome locus. The similar clinical presentations of individuals with RAB1A loss-of-function mutations and the 2p14-p15 microdeletion syndrome implicate loss of RAB1A in the pathogenesis of neurodevelopmental manifestations of this microdeletion syndrome. Our study identifies a RAB1A-related neurocognitive disorder with speech and motor delay, demonstrates an essential role for RAB1a in neuronal differentiation, and implicates RAB1A in the etiology of the neurodevelopmental sequelae associated with the 2p14-p15 microdeletion syndrome
- …