15 research outputs found

    Novel cell types, neurosecretory cells, and body plan of the early-diverging metazoan Trichoplax adhaerens.

    Get PDF
    BACKGROUND: Trichoplax adhaerens is the best-known member of the phylum Placozoa, one of the earliest-diverging metazoan phyla. It is a small disk-shaped animal that glides on surfaces in warm oceans to feed on algae. Prior anatomical studies of Trichoplax revealed that it has a simple three-layered organization with four somatic cell types. RESULTS: We reinvestigate the cellular organization of Trichoplax using advanced freezing and microscopy techniques to identify localize and count cells. Six somatic cell types are deployed in stereotyped positions. A thick ventral plate, comprising the majority of the cells, includes ciliated epithelial cells, newly identified lipophil cells packed with large lipid granules, and gland cells. Lipophils project deep into the interior, where they alternate with regularly spaced fiber cells whose branches contact all other cell types, including cells of the dorsal and ventral epithelium. Crystal cells, each containing a birefringent crystal, are arrayed around the rim. Gland cells express several proteins typical of neurosecretory cells, and a subset of them, around the rim, also expresses an FMRFamide-like neuropeptide. CONCLUSIONS: Structural analysis of Trichoplax with significantly improved techniques provides an advance in understanding its cell types and their distributions. We find two previously undetected cell types, lipohil and crystal cells, and an organized body plan in which different cell types are arranged in distinct patterns. The composition of gland cells suggests that they are neurosecretory cells and could control locomotor and feeding behavior

    Creating a population-averaged standard brain template for Japanese macaques (M. fuscata)

    Get PDF
    A number of modern digital anatomy techniques, based on structural MR brain images, have recently become applicable to the non-human primate brain. Such voxel-based quantitative techniques require a species-specific standardized brain template. Here we present a brain template for the Japanese macaque (Macaca fuscata). The template was designed to be used as a tool for spatially normalising Japanese macaque brains into a standard space. Although this species of macaque monkey is widely used in neuroscience research, including studies of higher cognitive brain functions, no standard MRI template of its brain is presently available. The template presented here is based on T1/T2* weighted, high-resolution 4 T MR images obtained from 16 male adult Japanese macaque monkeys. T1/T2* images were used to correct the signal inequalities resulting from the use of a surface coil. Based on these images, population-averaged probability maps were created for grey matter, white matter and cerebrospinal fluid. The new template presented here should facilitate future brain research using the Japanese macaque monkey. Whole brain templates are available at http://brainatlas.brain.riken.jp/jm/modules/xoonips/listitem.php?index_id=9
    corecore