9,619 research outputs found

    Introduction to Systems Approach

    Get PDF
    Main aspects of systems theory are outlined. Emphasis is on the interface of between time and systems - natural or artificial

    Precise time and time interval (PTTI), an overview

    Get PDF
    Present applications of precise time and frequency (T/F) technology can be grouped as follows: (1) Communications systems which require T/F for time division multiplexing and for using spread spectrum techniques. (2) Navigation systems which need T/F for position fixing using a timed signal. (3) Scientific-Metrological applications which use T/F as the most precisely reproducible standard of measurement. (4) Astronomical-Space applications which cover a variety of the most demanding applications such as pulsar research, Very Long Baseline Interferometry (VLBI) and laser/radar ranging. In particular, pulsar time-of-arrival measurements require submicrosecond precision over a period of one-half year referred to an extraterrestrial inertial system, and constitute the most stringent requirements for uniform timekeeping to date

    Semiflexible polymers under external fields confined to two dimensions

    Get PDF
    The non-equilibrium structural and dynamical properties of semiflexible polymers confined to two dimensions are investigated by molecular dynamics simulations. Three different scenarios are considered: The force-extension relation of tethered polymers, the relaxation of an initially stretched semiflexible polymer, and semiflexible polymers under shear flow. We find quantitative agreement with theoretical predictions for the force-extension relation and the time dependence of the entropically contracting polymer. The semiflexible polymers under shear flow exhibit significant conformational changes at large shear rates, where less stiff polymers are extended by the flow, whereas rather stiff polymers are contracted. In addition, the polymers are aligned by the flow, thereby the two-dimensional semiflexible polymers behave similarly to flexible polymers in three dimensions. The tumbling times display a power-law dependence at high shear rate rates with an exponent comparable to the one of flexible polymers in three-dimensional systems.Comment: Accepted for publication in J. Chem. Phy

    Spin Density Matrix of Spin-3/2 Hole Systems

    Full text link
    For hole systems with an effective spin j=3/2, we present an invariant decomposition of the spin density matrix that can be interpreted as a multipole expansion. The charge density corresponds to the monopole moment and the spin polarization due to a magnetic field corresponds to a dipole moment while heavy hole-light hole splitting can be interpreted as a quadrupole moment. For quasi two-dimensional hole systems in the presence of an in-plane magnetic field B the spin polarization is a higher-order effect that is typically much smaller than one even if the minority spin subband is completely depopulated. On the other hand, the field B can induce a substantial octupole moment which is a unique feature of j=3/2 hole systems.Comment: 8 pages, 1 figure, 3 table

    Dynamic regimes of fluids simulated by multiparticle-collision dynamics

    Get PDF
    We investigate the hydrodynamic properties of a fluid simulated with a mesoscopic solvent model. Two distinct regimes are identified, the `particle regime' in which the dynamics is gas-like, and the `collective regime' where the dynamics is fluid-like. This behavior can be characterized by the Schmidt number, which measures the ratio between viscous and diffusive transport. Analytical expressions for the tracer diffusion coefficient, which have been derived on the basis of a molecular-chaos assumption, are found to describe the simulation data very well in the particle regime, but important deviations are found in the collective regime. These deviations are due to hydrodynamic correlations. The model is then extended in order to investigate self-diffusion in colloidal dispersions. We study first the transport properties of heavy point-like particles in the mesoscopic solvent, as a function of their mass and number density. Second, we introduce excluded-volume interactions among the colloidal particles and determine the dependence of the diffusion coefficient on the colloidal volume fraction for different solvent mean-free paths. In the collective regime, the results are found to be in good agreement with previous theoretical predictions based on Stokes hydrodynamics and the Smoluchowski equation.Comment: 15 pages, 15 figure

    Spin precession and alternating spin polarization in spin-3/2 hole systems

    Full text link
    The spin density matrix for spin-3/2 hole systems can be decomposed into a sequence of multipoles which has important higher-order contributions beyond the ones known for electron systems [R. Winkler, Phys. Rev. B \textbf{70}, 125301 (2004)]. We show here that the hole spin polarization and the higher-order multipoles can precess due to the spin-orbit coupling in the valence band, yet in the absence of external or effective magnetic fields. Hole spin precession is important in the context of spin relaxation and offers the possibility of new device applications. We discuss this precession in the context of recent experiments and suggest a related experimental setup in which hole spin precession gives rise to an alternating spin polarization.Comment: 4 pages, 2 figures, to appear in Physical Review Letter

    Generation of spin currents and spin densities in systems with reduced symmetry

    Full text link
    We show that the spin-current response of a semiconductor crystal to an external electric field is considerably more complex than previously assumed. While in systems of high symmetry only the spin-Hall components are allowed, in systems of lower symmetry other non-spin-Hall components may be present. We argue that, when spin-orbit interactions are present only in the band structure, the distinction between intrinsic and extrinsic contributions to the spin current is not useful. We show that the generation of spin currents and that of spin densities in an electric field are closely related, and that our general theory provides a systematic way to distinguish between them in experiment. We discuss also the meaning of vertex corrections in systems with spin-orbit interactions.Comment: 4 page

    Quantum Hamiltonian for gravitational collapse

    Full text link
    Using a Hamiltonian formulation of the spherically symmetric gravity-scalar field theory adapted to flat spatial slicing, we give a construction of the reduced Hamiltonian operator. This Hamiltonian, together with the null expansion operators presented in an earlier work, form a framework for studying gravitational collapse in quantum gravity. We describe a setting for its numerical implementation, and discuss some conceptual issues associated with quantum dynamics in a partial gauge fixing.Comment: 17 pages, published version (minor changes

    Giant anisotropy of Zeeman splitting of quantum confined acceptors in Si/Ge

    Full text link
    Shallow acceptor levels in Si/Ge/Si quantum well heterostructures are characterized by resonant tunneling spectroscopy in the presence of high magnetic fields. In a perpendicular magnetic field we observe a linear Zeeman splitting of the acceptor levels. In an in-plane field, on the other hand, the Zeeman splitting is strongly suppressed. This anisotropic Zeeman splitting is shown to be a consequence of the huge light hole-heavy hole splitting caused by a large biaxial strain and a strong quantum confinement in the Ge quantum well.Comment: 5 figures, 4 page

    Tuning the scattering length with an optically induced Feshbach resonance

    Full text link
    We demonstrate optical tuning of the scattering length in a Bose-Einstein condensate as predicted by Fedichev {\em et al.} [Phys. Rev. Lett. {\bf 77}, 2913 (1996)]. In our experiment atoms in a 87^{87}Rb condensate are exposed to laser light which is tuned close to the transition frequency to an excited molecular state. By controlling the power and detuning of the laser beam we can change the atomic scattering length over a wide range. In view of laser-driven atomic losses we use Bragg spectroscopy as a fast method to measure the scattering length of the atoms.Comment: submitted to PRL, 5 pages, 5 figure
    • …
    corecore