129,841 research outputs found
Submerged arc welding of heavy plate
The submerged arc process is particularly suitable for heavy plate welding because of its ability to combine very high deposit rates along with excellent quality. It does these things without the smoke and spatter often accompanying other processes. It is available today in several forms that are pointed to the fabricators of heavy sections with long, short or round about welds. Tandem arc full automatic equipment is particularly suitable for those long heavy welds where speed and deposit rate are of the first order. An attachment called long stick-out which makes use of the IR drop on long electrode extensions can be included on this equipment to increase deposition rates 50% or more
The incidence and intensity of employer-provided training
This paper examines the provision of training by employers and the participation in training by employees, conditional on employers´ training provision. Together these two dimensions of training determine its overall distribution in the workforce. The factors which affect employer training provision and employee training participation are considered simultaneously within an empirical model using data drawn primarily from the 2001 Employers Skill Survey. The results are consistent with high fixed costs but constant marginal costs of training provision, while also supporting many of the predictions regarding the relationship between training and workforce skills, skill-shortages, workplace and local labour market characteristics
Fabrication process of a high temperature polymer matrix engine duct
The process that was used in the molding of an advanced composite outer by-pass duct planned for the F404 engine is discussed. This duct was developed as a potential replacement for the existing titanium duct in order to reduce both the weight and cost of the duct. The composite duct is now going into the manufacturing technology portion of the program. The duct is fabricated using graphite cloth impregnated with the PMR-15 matrix system
Characterization, cloning and immunogenicity of antigens released by lung-stage larvae of Schistosoma mansoni
Lung-stage schistosomula are the target of protective immunity in mice vaccinated with attenuated cercariae of Schistosoma mansoni. Therefore, proteins present at this developmental stage, and in particular those which are secreted, are a potential source of novel vaccine candidates. However, little information is available about such molecules. Here we describe the cDNA clones identified by screening expression libraries with serum raised against proteins released by lung-stage schistosomula. In total, 11 different cDNA species were identified, 6 of which have been described previously in S. mansoni; these included fructose 1,6-bisphosphate aldolase and Sm21.7 which together accounted for two-thirds of all positive clones. Of the 5 newly described schistosome genes, 1 cDNA had a high degree of homology to the s5a subunit of 26S proteasomes, most significant being with the human protein. The remaining 4 clones showed no significant homologies to any genes sequenced previously. Fructose 1,6-bisphosphate aldolase, Sm21.7, the proteasome homologue and 1 unknown clone (A26) have been expressed in a bacterial expression system and serum produced against each recombinant protein. Immunolocalization showed fructose 1,6-bisphosphate aldolase, Sm21.7 and the proteasome homologue to be most abundant in muscle cells whilst clone A26 was distributed throughout many tissues, but was most abundant in the tegument. Analysis of the cellular immune responses of vaccinated mice showed 3 of the 4 expressed clones to be highly immunogenic, inducing the secretion of large quantities of the Th1-type cytokine interferon gamma
Terrain analysis using radar shape-from-shading
This paper develops a maximum a posteriori (MAP) probability estimation framework for shape-from-shading (SFS) from synthetic aperture radar (SAR) images. The aim is to use this method to reconstruct surface topography from a single radar image of relatively complex terrain. Our MAP framework makes explicit how the recovery of local surface orientation depends on the whereabouts of terrain edge features and the available radar reflectance information. To apply the resulting process to real world radar data, we require probabilistic models for the appearance of terrain features and the relationship between the orientation of surface normals and the radar reflectance. We show that the SAR data can be modeled using a Rayleigh-Bessel distribution and use this distribution to develop a maximum likelihood algorithm for detecting and labeling terrain edge features. Moreover, we show how robust statistics can be used to estimate the characteristic parameters of this distribution. We also develop an empirical model for the SAR reflectance function. Using the reflectance model, we perform Lambertian correction so that a conventional SFS algorithm can be applied to the radar data. The initial surface normal direction is constrained to point in the direction of the nearest ridge or ravine feature. Each surface normal must fall within a conical envelope whose axis is in the direction of the radar illuminant. The extent of the envelope depends on the corrected radar reflectance and the variance of the radar signal statistics. We explore various ways of smoothing the field of surface normals using robust statistics. Finally, we show how to reconstruct the terrain surface from the smoothed field of surface normal vectors. The proposed algorithm is applied to various SAR data sets containing relatively complex terrain structure
Measurements of the free-bound and free-free continua of nitrogen, oxygen and air
Photometric measurement of radiation in high temperature ai
Vacuum thermal conductivity measurements of NASA E4A1 elastomeric heat shield material
Line source vacuum thermal conductivity measures for elastomeric heat shield materia
- …