36,348 research outputs found
Non-equilibrium umbrella sampling applied to force spectroscopy of soft matter
Physical systems often respond on a timescale which is longer than that of the measurement. This is particularly true in soft matter where direct experimental measurement, for example in force spectroscopy, drives the soft system out of equilibrium and provides a non-equilibrium measure. Here we demonstrate experimentally for the first time that equilibrium physical quantities (such as the mean square displacement) can be obtained from non-equilibrium measurements via umbrella sampling. Our model experimental system is a bead fluctuating in a time-varying optical trap. We also show this for simulated force spectroscopy on a complex soft molecule--a piston-rotaxane
Temperature Effects on Threshold Counterion Concentration to Induce Aggregation of fd Virus
We seek to determine the mechanism of like-charge attraction by measuring the
temperature dependence of critical divalent counterion concentration
() for the aggregation of fd viruses. We find that an increase in
temperature causes to decrease, primarily due to a decrease in the
dielectric constant () of the solvent. At a constant ,
is found to increase as the temperature increases. The effects of
and on can be combined to that of one parameter:
Bjerrum length (). decreases exponentially as
increases, suggesting that entropic effect of counterions plays an important
role at the onset of bundle formation.Comment: 12 pages, 3 figure
Voltage-controlled electron tunnelling from a single self-assembled quantum dot embedded in a two-dimensional-electron-gas-based photovoltaic cell
We perform high-resolution photocurrent (PC) spectroscopy to investigate
resonantly the neutral exciton ground-state (X0) in a single InAs/GaAs
self-assembled quantum dot (QD) embedded in the intrinsic region of an
n-i-Schottky photodiode based on a two-dimensional electron gas (2DEG), which
was formed from a Si delta-doped GaAs layer. Using such a device, a single-QD
PC spectrum of X0 is measured by sweeping the bias-dependent X0 transition
energy through that of a fixed narrow-bandwidth laser via the quantum-confined
Stark effect (QCSE). By repeating such a measurement for a series of laser
energies, a precise relationship between the X0 transition energy and bias
voltage is then obtained. Taking into account power broadening of the X0
absorption peak, this allows for high-resolution measurements of the X0
homogeneous linewidth and, hence, the electron tunnelling rate. The electron
tunnelling rate is measured as a function of the vertical electric field and
described accurately by a theoretical model, yielding information about the
electron confinement energy and QD height. We demonstrate that our devices can
operate as 2DEG-based QD photovoltaic cells and conclude by proposing two
optical spintronic devices that are now feasible.Comment: 34 pages, 11 figure
Current-Controlled Negative Differential Resistance due to Joule Heating in TiO2
We show that Joule heating causes current-controlled negative differential
resistance (CC-NDR) in TiO2 by constructing an analytical model of the
voltage-current V(I) characteristic based on polaronic transport for Ohm's Law
and Newton's Law of Cooling, and fitting this model to experimental data. This
threshold switching is the 'soft breakdown' observed during electroforming of
TiO2 and other transition-metal-oxide based memristors, as well as a precursor
to 'ON' or 'SET' switching of unipolar memristors from their high to their low
resistance states. The shape of the V(I) curve is a sensitive indicator of the
nature of the polaronic conduction.Comment: 13 pages, 2 figure
Vibration-induced granular segregation: a phenomenon driven by three mechanisms
The segregation of large spheres in a granular bed under vertical vibrations
is studied. In our experiments we systematically measure rise times as a
function of density, diameter and depth; for two different sinusoidal
excitations. The measurements reveal that: at low frequencies, inertia and
convection are the only mechanisms behind segregation. Inertia (convection)
dominates when the relative density is greater (less) than one. At high
frequencies, where convection is suppressed, fluidization of the granular bed
causes either buoyancy or sinkage and segregation occurs.Comment: 4 pages. 3 figures, revtex4, to appear in PRL (in press
Statistical Analysis of Airport Network of China
Through the study of airport network of China (ANC), composed of 128 airports
(nodes) and 1165 flights (edges), we show the topological structure of ANC
conveys two characteristics of small worlds, a short average path length
(2.067) and a high degree of clustering (0.733). The cumulative degree
distributions of both directed and undirected ANC obey two-regime power laws
with different exponents, i.e., the so-called Double Pareto Law. In-degrees and
out-degrees of each airport have positive correlations, whereas the undirected
degrees of adjacent airports have significant linear anticorrelations. It is
demonstrated both weekly and daily cumulative distributions of flight weights
(frequencies) of ANC have power-law tails. Besides, the weight of any given
flight is proportional to the degrees of both airports at the two ends of that
flight. It is also shown the diameter of each sub-cluster (consisting of an
airport and all those airports to which it is linked) is inversely proportional
to its density of connectivity. Efficiency of ANC and of its sub-clusters are
measured through a simple definition. In terms of that, the efficiency of ANC's
sub-clusters increases as the density of connectivity does. ANC is found to
have an efficiency of 0.484.Comment: 6 Pages, 5 figure
Oral iron exacerbates colitis and influences the intestinal microbiome
Inflammatory bowel disease (IBD) is associated with anaemia and oral iron replacement to correct this can be problematic, intensifying inflammation and tissue damage. The intestinal microbiota also plays a key role in the pathogenesis of IBD, and iron supplementation likely influences gut bacterial diversity in patients with IBD. Here, we assessed the impact of dietary iron, using chow diets containing either 100, 200 or 400 ppm, fed ad libitum to adult female C57BL/6 mice in the presence or absence of colitis induced using dextran sulfate sodium (DSS), on (i) clinical and histological severity of acute DSS-induced colitis, and (ii) faecal microbial diversity, as assessed by sequencing the V4 region of 16S rRNA. Increasing or decreasing dietary iron concentration from the standard 200 ppm exacerbated both clinical and histological severity of DSS-induced colitis. DSS-treated mice provided only half the standard levels of iron ad libitum (i.e. chow containing 100 ppm iron) lost more body weight than those receiving double the amount of standard iron (i.e. 400 ppm); p<0.01. Faecal calprotectin levels were significantly increased in the presence of colitis in those consuming 100 ppm iron at day 8 (5.94-fold) versus day-10 group (4.14-fold) (p<0.05), and for the 400 ppm day-8 group (8.17-fold) versus day-10 group (4.44-fold) (p<0.001). In the presence of colitis, dietary iron at 400 ppm resulted in a significant reduction in faecal abundance of Firmicutes and Bacteroidetes, and increase of Proteobacteria, changes which were not observed with lower dietary intake of iron at 100 ppm. Overall, altering dietary iron intake exacerbated DSS-induced colitis; increasing the iron content of the diet also led to changes in intestinal bacteria diversity and composition after colitis was induced with DSS
Terahertz metamaterials on free-standing highly-flexible polyimide substrates
We have fabricated resonant terahertz metamaterials on free standing
polyimide substrates. The low-loss polyimide substrates can be as thin as 5.5
micron yielding robust large-area metamaterials which are easily wrapped into
cylinders with a radius of a few millimeters. Our results provide a path
forward for creating multi-layer non-planar metamaterials at terahertz
frequencies.Comment: 4 pages, higher resolution figures available upon reques
Detection of charge motion in a non-metallic silicon isolated double quantum dot
As semiconductor device dimensions are reduced to the nanometer scale,
effects of high defect density surfaces on the transport properties become
important to the extent that the metallic character that prevails in large and
highly doped structures is lost and the use of quantum dots for charge sensing
becomes complex. Here we have investigated the mechanism behind the detection
of electron motion inside an electrically isolated double quantum dot that is
capacitively coupled to a single electron transistor, both fabricated from
highly phosphorous doped silicon wafers. Despite, the absence of a direct
charge transfer between the detector and the double dot structure, an efficient
detection is obtained. In particular, unusually large Coulomb peak shifts in
gate voltage are observed. Results are explained in terms of charge
rearrangement and the presence of inelastic cotunneling via states at the
periphery of the single electron transistor dot
- …