13 research outputs found

    α8β1 integrin regulates nutrient absorption through an Mfge8-PTEN dependent mechanism.

    Get PDF
    Coordinated gastrointestinal smooth muscle contraction is critical for proper nutrient absorption and is altered in a number of medical disorders. In this work, we demonstrate a critical role for the RGD-binding integrin α8β1 in promoting nutrient absorption through regulation of gastrointestinal motility. Smooth muscle-specific deletion and antibody blockade of α8 in mice result in enhanced gastric antral smooth muscle contraction, more rapid gastric emptying, and more rapid transit of food through the small intestine leading to malabsorption of dietary fats and carbohydrates as well as protection from weight gain in a diet-induced model of obesity. Mechanistically, ligation of α8β1 by the milk protein Mfge8 reduces antral smooth muscle contractile force by preventing RhoA activation through a PTEN-dependent mechanism. Collectively, our results identify a role for α8β1 in regulating gastrointestinal motility and identify α8 as a potential target for disorders characterized by hypo- or hyper-motility

    Mfge8 suppresses airway hyperresponsiveness in asthma by regulating smooth muscle contraction

    No full text
    Airway obstruction is a hallmark of allergic asthma and is caused primarily by airway smooth muscle (ASM) hypercontractility. Airway inflammation leads to the release of cytokines that enhance ASM contraction by increasing ras homolog gene family, member A (RhoA) activity. The protective mechanisms that prevent or attenuate the increase in RhoA activity have not been well studied. Here, we report that mice lacking the gene that encodes the protein Milk Fat Globule-EGF factor 8 (Mfge8(-/-)) develop exaggerated airway hyperresponsiveness in experimental models of asthma. Mfge8(-/-) ASM had enhanced contraction after treatment with IL-13, IL-17A, or TNF-α. Recombinant Mfge8 reduced contraction in murine and human ASM treated with IL-13. Mfge8 inhibited IL-13-induced NF-κB activation and induction of RhoA. Mfge8 also inhibited rapid activation of RhoA, an effect that was eliminated by an inactivating point mutation in the RGD integrin-binding site in recombinant Mfge8. Human subjects with asthma had decreased Mfge8 expression in airway biopsies compared with healthy controls. These data indicate that Mfge8 binding to integrin receptors on ASM opposes the effect of allergic inflammation on RhoA activity and identify a pathway for specific inhibition of ASM hypercontractility in asthma

    Mfge8 diminishes the severity of tissue fibrosis in mice by binding and targeting collagen for uptake by macrophages

    No full text
    Milk fat globule epidermal growth factor 8 (Mfge8) is a soluble glycoprotein known to regulate inflammation and immunity by mediating apoptotic cell clearance. Since fibrosis can occur as a result of exaggerated apoptosis and inflammation, we set out to investigate the hypothesis that Mfge8 might negatively regulate tissue fibrosis. We report here that Mfge8 does decrease the severity of tissue fibrosis in a mouse model of pulmonary fibrosis; however, it does so not through effects on inflammation and apoptotic cell clearance, but by binding and targeting collagen for cellular uptake through its discoidin domains. Initial analysis revealed that Mfge8–/– mice exhibited enhanced pulmonary fibrosis after bleomycin-induced lung injury. However, they did not have increased inflammation or impaired apoptotic cell clearance after lung injury compared with Mfge8+/+ mice; rather, they had a defect in collagen turnover. Further experiments indicated that Mfge8 directly bound collagen and that Mfge8–/– macrophages exhibited defective collagen uptake that could be rescued by recombinant Mfge8 containing at least one discoidin domain. These data demonstrate a critical role for Mfge8 in decreasing the severity of murine tissue fibrosis by facilitating the removal of accumulated collagen
    corecore