62 research outputs found

    From signalling oscillations to somite formation

    Get PDF
    Periodic segmentation of vertebrate embryos or somitogenesis is regulated by a dynamic network of signalling pathways. Signalling gradients determine the spacing of the forming segments, while signalling oscillations, collectively termed the segmentation clock, ensure their regular timing. Since the segmentation clock is a paradigm of signalling dynamics at tissue level, its mechanism and function have been the topic of many studies. Recently, researchers have been able to analyse and quantify these signalling dynamics with unprecedented precision, revealing the complexity of interlinked oscillations and tissue-wide dynamics throughout development. Initial studies have shown how the interplay between signalling dynamics and cellular mechanics drive the periodic formation of segments. Looking ahead, new techniques such as in vitro stem cell-based models of (human) embryonic development will enable detailed investigations into the mechanisms of somitogenesis

    A Microfluidics Approach for the Functional Investigation of Signaling Oscillations Governing Somitogenesis

    Get PDF
    Periodic segmentation of the presomitic mesoderm of a developing mouse embryo is controlled by a network of signaling pathways. Signaling oscillations and gradients are thought to control the timing and spacing of segment formation, respectively. While the involved signaling pathways have been studied extensively over the last decades, direct evidence for the function of signaling oscillations in controlling somitogenesis has been lacking. To enable the functional investigation of signaling dynamics, microfluidics is a previously established tool for the subtle modulation of these dynamics. With this microfluidics-based entrainment approach endogenous signaling oscillations are synchronized by pulses of pathway modulators. This enables modulation of, for instance, the oscillation period or the phase-relationship between two oscillating pathways. Furthermore, spatial gradients of pathway modulators can be established along the tissue to study how specific changes in the signaling gradients affect somitogenesis. The present protocol is meant to help establish microfluidic approaches for the first-time users of microfluidics. The basic principles and equipment needed to set up a microfluidic system are described, and a chip design is provided, with which a mold for chip generation can conveniently be prepared using a 3D printer. Finally, how to culture primary mouse tissue on a microfluidic chip and how to entrain signaling oscillations to external pulses of pathway modulators are discussed. This microfluidic system can also be adapted to harbor other in vivo and in vitro model systems such as gastruloids and organoids for functional investigation of signaling dynamics and morphogen gradients in other contexts

    In vivo biofunctional evaluation of hydrogels for disc regeneration

    Get PDF
    Purpose Regenerative strategies aim to restore the original biofunctionality of the intervertebral disc. Different biomaterials are available, which might support disc regeneration. In the present study, the prospects of success of two hydrogels functionalized with anti-angiogenic peptides and seeded with bone marrow derived mononuclear cells (BMC), respectively, were investigated in an ovine nucleotomy model. Methods In a one-step procedure iliac crest aspirates were harvested and, subsequently, separated BMC were seeded on hydrogels and implanted into the ovine disc. For the cell-seeded approach a hyaluronic acid-based hydrogel was used. The anti-angiogenic potential of newly developed VEGF-blockers was investigated on ionically crosslinked metacrylated gellan gum hydrogels. Untreated discs served as nucleotomy controls. 24 adult merino sheep were used. After 6 weeks histological, after 12 weeks histological and biomechanical analyses were conducted. Results Biomechanical tests revealed no differences between any of the implanted and nucleotomized discs. All implanted discs significantly degenerated compared to intact discs. In contrast, there was no marked difference between implanted and nucleotomized discs. In tendency, albeit not significant, degeneration score and disc height index deteriorated for all but not for the cell-seeded hydrogels from 6 to 12 weeks. Cell-seeded hydrogels slightly decelerated degeneration. Conclusions None of the hydrogel configurations was able to regenerate biofunctionality of the intervertebral disc. This might presumably be caused by hydrogel extrusion. Great importance should be given to the development of annulus sealants, which effectively exploit the potential of (cell-seeded) hydrogels for biological disc regeneration and restoration of intervertebral disc functioningThis work was supported by the EU-project Disc Regeneration (NMP3-LA-2008-213904). Technical assistance of Iris Baum and the whole animal surgery team of the Institute of Orthopaedic Research and Biomechanics, Ulm, are gratefully acknowledged. DDAHA hydrogels were kindly provided by Cristina Longinotti (DDAHA, Anika Therapeutics, Abano Therme, Italy)

    Physical activity and health promotion for nursing staff in elderly care: a study protocol for a randomised controlled trial

    Get PDF
    Introduction Nursing staff is burdened by high workload and stress. Furthermore, heavy lifting, as well as transferring nursing home residents, cause lumbar tissue damage and back pain. Exercise intervention studies to reduce work-related problems are rare and the evidence for efficacy of studies among nurses is limited. Studies including targeted analysis of requirements are necessary to generate effective recommendations and tailored interventions for health promotion programmes. The purpose of this multicentred intervention study is to identify work-related problems, to implement health promotion programmes and to evaluate their effectiveness. Methods and analysis A randomised controlled trial will be conducted, including a total of 48 nursing home facilities in eight regions of Germany with an estimated sample size of 700 nurses. Standardised ergonomics and posture training (10 weeks, once a week for 20–30 min) and subsequently, back-fitness training (12 weeks, once a week for 45–60 min) will be administered. Following the implementation of standardised health promotion programmes, further demand-oriented interventions can be implemented. The perceived exposure to work-related demands, work-related pain in different parts of the body, health-related quality of life, perceived stress, work-related patterns of behaviour and experience, presentism behaviour, work environment as well as general needs and barriers to health promotion, will be assessed at baseline (pre-test), at 10 weeks (post-test, after ergonomics training), at 22 weeks (post-test, after back-fitness training) and at 34 weeks of the programme (follow-up). Ethics and dissemination The study was reviewed and approved by the local ethics committee of the University of Hamburg (AZ: 2018_168). The results of the study will be published in open-access and international journals. Furthermore, the results will be presented in the participating nursing homes and at national and international conferences

    Fronto-striatal alterations correlate with apathy severity in behavioral variant frontotemporal dementia

    Get PDF
    Structural and functional changes in cortical and subcortical regions have been reported in behavioral variant frontotemporal dementia (bvFTD), however, a multimodal approach may provide deeper insights into the neural correlates of neuropsychiatric symptoms. In this multicenter study, we measured cortical thickness (CTh) and subcortical volumes to identify structural abnormalities in 37 bvFTD patients, and 37 age- and sex-matched healthy controls. For seed regions with significant structural changes, whole-brain functional connectivity (FC) was examined in a sub-cohort of N = 22 bvFTD and N = 22 matched control subjects to detect complementary alterations in brain network organization. To explore the functional significance of the observed structural and functional deviations, correlations with clinical and neuropsychological outcomes were tested where available. Significantly decreased CTh was observed in the bvFTD group in caudal middle frontal gyrus, left pars opercularis, bilateral superior frontal and bilateral middle temporal gyrus along with subcortical volume reductions in bilateral basal ganglia, thalamus, hippocampus, and amygdala. Resting-state functional magnetic resonance imaging showed decreased FC in bvFTD between: dorsal striatum and left caudal middle frontal gyrus;putamen and fronto-parietal regions;pallidum and cerebellum. Conversely, bvFTD showed increased FC between: left middle temporal gyrus and paracingulate gyrus;caudate nucleus and insula;amygdala and parahippocampal gyrus. Additionally, cortical thickness in caudal, lateral and superior frontal regions as well as caudate nucleus volume correlated negatively with apathy severity scores of the Neuropsychiatry Inventory Questionnaire. In conclusion, multimodal structural and functional imaging indicates that fronto-striatal regions have a considerable influence on the severity of apathy in bvFTD

    Plasma extracellular vesicle tau and TDP-43 as diagnostic biomarkers in FTD and ALS

    Get PDF
    Minimally invasive biomarkers are urgently needed to detect molecular pathology in frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS). Here, we show that plasma extracellular vesicles (EVs) contain quantifiable amounts of TDP-43 and full-length tau, which allow the quantification of 3-repeat (3R) and 4-repeat (4R) tau isoforms. Plasma EV TDP-43 levels and EV 3R/4R tau ratios were determined in a cohort of 704 patients, including 37 genetically and 31 neuropathologically proven cases. Diagnostic groups comprised patients with TDP-43 proteinopathy ALS, 4R tauopathy progressive supranuclear palsy, behavior variant FTD (bvFTD) as a group with either tau or TDP-43 pathology, and healthy controls. EV tau ratios were low in progressive supranuclear palsy and high in bvFTD with tau pathology. EV TDP-43 levels were high in ALS and in bvFTD with TDP-43 pathology. Both markers discriminated between the diagnostic groups with area under the curve values &gt;0.9, and between TDP-43 and tau pathology in bvFTD. Both markers strongly correlated with neurodegeneration, and clinical and neuropsychological markers of disease severity. Findings were replicated in an independent validation cohort of 292 patients including 34 genetically confirmed cases. Taken together, the combination of EV TDP-43 levels and EV 3R/4R tau ratios may aid the molecular diagnosis of FTD, FTD spectrum disorders and ALS, providing a potential biomarker to monitor disease progression and target engagement in clinical trials.</p

    Mechanism of KMT5B haploinsufficiency in neurodevelopment in humans and mice.

    Get PDF
    Pathogenic variants in KMT5B, a lysine methyltransferase, are associated with global developmental delay, macrocephaly, autism, and congenital anomalies (OMIM# 617788). Given the relatively recent discovery of this disorder, it has not been fully characterized. Deep phenotyping of the largest (n = 43) patient cohort to date identified that hypotonia and congenital heart defects are prominent features that were previously not associated with this syndrome. Both missense variants and putative loss-of-function variants resulted in slow growth in patient-derived cell lines. KMT5B homozygous knockout mice were smaller in size than their wild-type littermates but did not have significantly smaller brains, suggesting relative macrocephaly, also noted as a prominent clinical feature. RNA sequencing of patient lymphoblasts and Kmt5b haploinsufficient mouse brains identified differentially expressed pathways associated with nervous system development and function including axon guidance signaling. Overall, we identified additional pathogenic variants and clinical features in KMT5B-related neurodevelopmental disorder and provide insights into the molecular mechanisms of the disorder using multiple model systems
    corecore