363 research outputs found
Deep Observation of the Giant Radio Lobes of Centaurus A with the Fermi Large Area Telescope
The detection of high energy (HE) {\gamma}-ray emission up to about 3 GeV
from the giant lobes of the radio galaxy Centaurus A has been recently reported
by the Fermi-LAT Collaboration based on ten months of all-sky survey
observations. A data set more than three times larger is used here to study the
morphology and photon spectrum of the lobes with higher statistics. The larger
data set results in the detection of HE {\gamma}-ray emission (up to about 6
GeV) from the lobes with a significance of more than 10 and 20 {\sigma} for the
North and the South lobe, respectively. Based on a detailed spatial analysis
and comparison with the associated radio lobes, we report evidence for a
substantial extension of the HE {\gamma}-ray emission beyond the WMAP radio
image in the case of the Northern lobe of Cen A. We reconstruct the spectral
energy distribution (SED) of the lobes using radio (WMAP) and Fermi-LAT data
from the same integration region. The implications are discussed in the context
of hadronic and leptonic scenarios
Observation of strong final-state effects in pi+ production in pp collisions at 400 MeV
Differential cross sections of the reactions and have been measured at MeV by detecting the charged
ejectiles in the angular range . The
deduced total cross sections agree well with those published previously for
neighbouring energies. The invariant mass spectra are observed to be strongly
affected by production and final-state interaction. The data are
well described by Monte Carlo simulations including both these effects. The
ratio of and cross sections also compares
favourably to a recent theoretical prediction which suggests a dominance of
-production in the relative -state.Comment: 17 pages, 5 figure
Higher Partial Waves in p+p->p+p+eta near Threshold
Exclusive measurements of the production of eta mesons in the p+p->p+p+eta
reaction have been carried out at excess energies of 16 and 37 MeV above
threshold. The deviations from phase space are dominated by the proton-proton
final state interaction and this influences particularly the energy
distribution of the eta meson. However, evidence is also presented at the
higher energy for the existence of an anisotropy in the angular distributions
of the eta meson and also of the final proton-proton pair, probably to be
associated with D-waves in this system interfering with the dominant S-wave
term. The sign of the eta angular anisotropy suggests that rho-exchange is
important for this reaction.Comment: 16 pages, LaTeX2e, 3 EPS Figures, Updated version, Accepted for
publication in Phys. Lett.
Search for Narrow NNpi Resonances in Exclusive p p -> p p pi+ pi- Measurements
Narrow structures in the range of a few MeV have been searched for in p p pi+
and p p pi- invariant mass spectra obtained from exclusive measurements of the
p p -> p p pi+ pi- reaction at Tp = 725, 750 and 775 MeV using the PROMICE/WASA
detector at CELSIUS. The selected reaction is particularily well suited for the
search for NN and / or N Delta decoupled dibaryon resonances. Except for a
possible fluctuation at 2087 MeV/c^2 in Mpppi- no narrow structures could be
identified neither in Mpppi+ nor in Mpppi- on the 3 sigma level of statistical
significance, giving an upper limit (95% C.L.) for dibaryon production in this
reaction of sigma < 20 nb for 2020 MeV/c^2 < m(dibaryon) < 2085 MeV/c^2Comment: 3 pages, 4 figure
Study of the p p -> p p pi+ pi- Reaction in the Low-Energy Tail of the Roper Resonance
Exclusive measurements of the p p -> p p pi+ pi- reaction have been carried
out at Tp = 775 MeV at CELSIUS using the PROMICE/WASA setup. Together with data
obtained at lower energy they point to a dominance of the Roper excitation in
this process. From the observed interference of its decay routes N* -> N sigma
and N* -> Delta pi -> N sigma their energy-dependent relative branching ratio
is determined
A side-by-side comparison of Daya Bay antineutrino detectors
The Daya Bay Reactor Neutrino Experiment is designed to determine precisely
the neutrino mixing angle with a sensitivity better than 0.01 in
the parameter sin at the 90% confidence level. To achieve this
goal, the collaboration will build eight functionally identical antineutrino
detectors. The first two detectors have been constructed, installed and
commissioned in Experimental Hall 1, with steady data-taking beginning
September 23, 2011. A comparison of the data collected over the subsequent
three months indicates that the detectors are functionally identical, and that
detector-related systematic uncertainties exceed requirements.Comment: 24 pages, 36 figure
Observation of electron-antineutrino disappearance at Daya Bay
The Daya Bay Reactor Neutrino Experiment has measured a non-zero value for
the neutrino mixing angle with a significance of 5.2 standard
deviations. Antineutrinos from six 2.9 GW reactors were detected in
six antineutrino detectors deployed in two near (flux-weighted baseline 470 m
and 576 m) and one far (1648 m) underground experimental halls. With a 43,000
ton-GW_{\rm th}-day livetime exposure in 55 days, 10416 (80376) electron
antineutrino candidates were detected at the far hall (near halls). The ratio
of the observed to expected number of antineutrinos at the far hall is
. A rate-only analysis
finds in a
three-neutrino framework.Comment: 5 figures. Version to appear in Phys. Rev. Let
Pulsar-wind nebulae and magnetar outflows: observations at radio, X-ray, and gamma-ray wavelengths
We review observations of several classes of neutron-star-powered outflows:
pulsar-wind nebulae (PWNe) inside shell supernova remnants (SNRs), PWNe
interacting directly with interstellar medium (ISM), and magnetar-powered
outflows. We describe radio, X-ray, and gamma-ray observations of PWNe,
focusing first on integrated spectral-energy distributions (SEDs) and global
spectral properties. High-resolution X-ray imaging of PWNe shows a bewildering
array of morphologies, with jets, trails, and other structures. Several of the
23 so far identified magnetars show evidence for continuous or sporadic
emission of material, sometimes associated with giant flares, and a few
possible "magnetar-wind nebulae" have been recently identified.Comment: 61 pages, 44 figures (reduced in quality for size reasons). Published
in Space Science Reviews, "Jets and Winds in Pulsar Wind Nebulae, Gamma-ray
Bursts and Blazars: Physics of Extreme Energy Release
- …