26 research outputs found

    Peak intensity prediction in MALDI-TOF mass spectrometry: A machine learning study to support quantitative proteomics

    Get PDF
    Timm W, Scherbart A, Boecker S, Kohlbacher O, Nattkemper TW. Peak intensity prediction in MALDI-TOF mass spectrometry: A machine learning study to support quantitative proteomics. BMC Bioinformatics. 2008;9(1):443.Background: Mass spectrometry is a key technique in proteomics and can be used to analyze complex samples quickly. One key problem with the mass spectrometric analysis of peptides and proteins, however, is the fact that absolute quantification is severely hampered by the unclear relationship between the observed peak intensity and the peptide concentration in the sample. While there are numerous approaches to circumvent this problem experimentally (e. g. labeling techniques), reliable prediction of the peak intensities from peptide sequences could provide a peptide-specific correction factor. Thus, it would be a valuable tool towards label-free absolute quantification. Results: In this work we present machine learning techniques for peak intensity prediction for MALDI mass spectra. Features encoding the peptides' physico-chemical properties as well as string-based features were extracted. A feature subset was obtained from multiple forward feature selections on the extracted features. Based on these features, two advanced machine learning methods (support vector regression and local linear maps) are shown to yield good results for this problem (Pearson correlation of 0.68 in a ten-fold cross validation). Conclusion: The techniques presented here are a useful first step going beyond the binary prediction of proteotypic peptides towards a more quantitative prediction of peak intensities. These predictions in turn will turn out to be beneficial for mass spectrometry-based quantitative proteomics

    Crystal structures of the substrate free-enzyme, and reaction intermediate of the HAD superfamily member, haloacid dehalogenase DehIVa from Burkholderia cepacia MBA4. (2NO4)

    No full text
    <div>DehIVa is a haloacid dehalogenase (EC 3.8.1.2) from the soil and water borne bacterium Burkholderia cepacia MBA4, which belongs to the functionally variable haloacid dehalogenase (HAD) superfamily of enzymes. The haloacid dehalogenases catalyse the removal of halides from haloacids resulting in a hydroxlated product. These enzymes are of interest for their potential to degrade recalcitrant halogenated environmental pollutants and their use in the synthesis of industrial chemicals. The haloacid dehalogenases utilise a nucleophilic attack on the substrate by an aspartic acid residue to form an enzyme-substrate ester bond and concomitantly cleaving of the carbon-halide bond and release of a hydroxylated product following ester hydrolysis. We present the crystal structures of both the substrate-free DehIVa refined to 1.93 A resolution and DehIVa covalently bound to l-2-monochloropropanoate trapped as a reaction intermediate, refined to 2.7 A resolution. Electron density consistent with a previously unidentified yet anticipated water molecule in the active site poised to donate its hydroxyl group to the product and its proton to the catalytic Asp11 is evident. It has been unclear how substrate enters the active site of this and related enzymes. The results of normal mode analysis (NMA) are presented and suggest a means whereby the predicted global dynamics of the enzyme allow for entry of the substrate into the active site. In the context of these results, the possible role of Arg42 and Asn178 in a `lock down` mechanism affecting active site access is discussed. In silico substrate docking of enantiomeric substrates has been examined in order to evaluate the enzymes enantioselectivity.</div><div><br></div><p></p

    Crystal Structures of the Substrate Free-enzyme, and Reaction Intermediate of the HAD Superfamily Member, Haloacid Dehalogenase DehIVa from Burkholderia cepacia MBA4

    No full text
    DehIVa is a haloacid dehalogenase (EC 3.8.1.2) from the soil and water borne bacterium Burkholderia cepacia MBA4, which belongs to the functionally variable haloacid dehalogenase (HAD) superfamily of enzymes. The haloacid dehalogenases catalyse the removal of halides from haloacids resulting in a hydroxlated product. These enzymes are of interest for their potential to degrade recalcitrant halogenated environmental pollutants and their use in the synthesis of industrial chemicals. The haloacid dehalogenases utilise a nucleophilic attack on the substrate by an aspartic acid residue to form an enzyme-substrate ester bond and concomitantly cleaving of the carbon-halide bond and release of a hydroxylated product following ester hydrolysis. We present the crystal structures of both the substrate-free DehIVa refined to 1.93 Å resolution and DehIVa covalently bound to l-2-monochloropropanoate trapped as a reaction intermediate, refined to 2.7 Å resolution. Electron density consistent with a previously unidentified yet anticipated water molecule in the active site poised to donate its hydroxyl group to the product and its proton to the catalytic Asp11 is evident. It has been unclear how substrate enters the active site of this and related enzymes. The results of normal mode analysis (NMA) are presented and suggest a means whereby the predicted global dynamics of the enzyme allow for entry of the substrate into the active site. In the context of these results, the possible role of Arg42 and Asn178 in a "lock down" mechanism affecting active site access is discussed. In silico substrate docking of enantiomeric substrates has been examined in order to evaluate the enzymes enantioselectivity. Crown Copyright © 2007.link_to_subscribed_fulltex

    The crystal structure of DehI reveals a new alpha-haloacid dehalogenase fold and active-site mechanism. (3BJX)

    No full text
    <div>Haloacid dehalogenases catalyse the removal of halides from organic haloacids and are of interest for bioremediation and for their potential use in the synthesis of industrial chemicals. We present the crystal structure of the homodimer DehI from Pseudomonas putida strain PP3, the first structure of a group I alpha-haloacid dehalogenase that can process both l- and d-substrates. The structure shows that the DehI monomer consists of two domains of approximately 130 amino acids that have approximately 16% sequence identity yet adopt virtually identical and unique folds that form a pseudo-dimer. Analysis of the active site reveals the likely binding mode of both l- and d-substrates with respect to key catalytic residues. Asp189 is predicted to activate a water molecule for nucleophilic attack of the substrate chiral centre resulting in an inversion of configuration of either l- or d-substrates in contrast to d-only enzymes. These details will assist with future bioengineering of dehalogenases.</div><div><br></div><p></p

    The impact of single cysteine residue mutations on the replication terminator protein

    Full text link
    We report the structural and biophysical consequences of cysteine substitutions in the DNA-binding replication terminator protein (RTP) of Bacillus subtilis, that resulted in an optimised RTP mutant suitable for structural studies. The cysteine residue 110 was replaced with alanine, valine or serine. Protein secondary structure and stability (using circular dichroism spectropolarimetry), self-association (using analytical ultracentrifugation), and DNA-binding measurements revealed RTP.C110S to be the most similar mutant to wild-type RTP. The C110A and C110V.RTP mutants were less soluble, less stable and showed lower DNA-binding affinity. The structure of RTP.C110S, solved to 2.5Å resolution using crystallographic methods, showed no major structural perturbation due to the mutation. Heteronuclear NMR spectroscopic studies revealed subtle differences in the electronic environment about the site of mutation. The study demonstrates the suitability of serine as a substitute for cysteine in RTP and the high sensitivity of protein behaviour to single amino acid substitutions. © 2003 Elsevier kInc. All rights reserved

    Conformational rearrangements of RIG-I receptor on formation of a multiprotein:dsRNA assembly.

    Get PDF
    The retinoic acid inducible gene-I (RIG-I)-like family of receptors is positioned at the front line of our innate cellular defence system. RIG-I detects and binds to foreign duplex RNA in the cytoplasm of both immune and non-immune cells, and initiates the induction of type I interferons and pro-inflammatory cytokines. The mechanism of RIG-I activation by double-stranded RNA (dsRNA) involves a molecular rearrangement proposed to expose the N-terminal pair of caspase activation recruitment domains, enabling an interaction with interferon-beta promoter stimulator 1 (IPS-1) and thereby initiating downstream signalling. dsRNA is particularly stimulatory when longer than 20 bp, potentially through allowing binding of more than one RIG-I molecule. Here, we characterize full-length RIG-I and RIG-I subdomains combined with a stimulatory 29mer dsRNA using multi-angle light scattering and size-exclusion chromatography-coupled small-angle X-ray scattering, to build up a molecular model of RIG-I before and after the formation of a 2:1 protein:dsRNA assembly. We report the small-angle X-ray scattering-derived solution structure of the human apo-RIG-I and observe that on binding of RIG-I to dsRNA in a 2:1 ratio, the complex becomes highly extended and flexible. Hence, here we present the first model of the fully activated oligomeric RIG-I

    Interaction of the replication terminator protein of Bacillus subtilis with DNA probed by NMR spectroscopy

    Full text link
    Termination of DNA replication in Bacillus subtilis involves the polar arrest of replication forks by a specific complex formed between the dimeric 29 kDa replication terminator protein (RTP) and DNA terminator sites. We have used NMR spectroscopy to probe the changes in 1H-15N correlation spectra of a 15N-labelled RTP.C110S mutant upon the addition of a 21 base pair symmetrical DNA binding site. Assignment of the 1H-15N correlations was achieved using a suite of triple resonance NMR experiments with 15N,13C,70% 2H enriched protein recorded at 800 MHz and using TROSY pulse sequences. Perturbations to 1H-15N spectra revealed that the N-termini, α3-helices and several loops are affected by the binding interaction. An analysis of this data in light of the crystallographically determined apo- and DNA-bound forms of RTP.C110S revealed that the NMR spectral perturbations correlate more closely to protein structural changes upon complex formation rather than to interactions at the protein-DNA interface. © 2005 Elsevier Inc. All rights reserved

    Structure of the RTP-DNA complex and the mechanism of polar replication fork arrest

    Full text link
    The coordinated termination of DNA replication is an important step in the life cycle of bacteria with circular chromosomes, but has only been defined at a molecular level in two systems to date. Here we report the structure of an engineered replication terminator protein (RTP) ot Bacillus subtilis in complex with a 21 base pair DNA by X-ray crystallography at 2.5 Ă… resolution. We also use NMR spectroscopic titration techniques. This work reveals a novel DNA interaction involving a dimeric 'winged helix' domain protein that differs from predictions. While the two recognition helices of RTP ate in close contact with the B-form DNA major grooves, the 'wings' and N-termini of RTP do not form intimate contacts with the DNA. This structure provides insight into the molecular basis of polar replication fork arrest based on a model of cooperative binding and differential binding affinities of RTP to the two adjacent binding sites in file complete terminator
    corecore