223 research outputs found

    Geometric, electronic and magnetic structure of Fex_{x}Oy+_{y}^{+} clusters

    Get PDF
    Correlation between geometry, electronic structure and magnetism of solids is both intriguing and elusive. This is particularly strongly manifested in small clusters, where a vast number of unusual structures appear. Here, we employ density functional theory in combination with a genetic search algorithm, GGA+U+U and a hybrid functional to determine the structure of gas phase Fex_{x}Oy+/0_{y}^{+/0} clusters. For Fex_{x}Oy_{y} cation clusters we also calculate the corresponding vibration spectra and compare them with experiments. We successfully identify Fe3_{3}O4+_{4}^{+}, Fe4_{4}O5+_{5}^{+}, Fe4_{4}O6+_{6}^{+}, Fe5_{5}O7+_{7}^{+} and propose structures for Fe6_{6}O8+_{8}^{+}. Within the triangular geometric structure of Fe3_{3}O4+_{4}^{+} a non-collinear, ferrimagnetic and ferromagnetic state are comparable in energy. Fe4_{4}O5+_{5}^{+} and Fe4_{4}O6+_{6}^{+} are ferrimagnetic with a residual magnetic moment of 1~\muB{} due to ionization. Fe5_{5}O7+_{7}^{+} is ferrimagnetic due to the odd number of Fe atoms. We compare the electronic structure with bulk magnetite and find Fe4_{4}O5+_{5}^{+}, Fe4_{4}O6+_{6}^{+}, Fe6_{6}O8+_{8}^{+} to be mixed valence clusters. In contrast, in Fe3_{3}O4+_{4}^{+} and Fe5_{5}O7+_{7}^{+} all Fe are found to be trivalent.Comment: 14 pages, 21 figure

    Low work function of the (1000) Ca2N surface

    Get PDF
    Polymer diodes require cathodes that do not corrode the polymer but do have low work function to minimize the electron injection barrier. First-principles calculations demonstrate that the work function of the (1000) surface of the compound Ca2N is half an eV lower than that of the elemental metal Ca (2.35 vs. 2.87 eV). Moreover its reactivity is expected to be smaller. This makes Ca2N an interesting candidate to replace calcium as cathode material for polymer light emitting diode devices.Comment: 3 pages, 4 figures, accepted by J. Appl. Phy

    Interrelation of work function and surface stability: the case of BaAl4

    Full text link
    The relationship between the work function (Phi) and the surface stability of compounds is, to our knowledge, unknown, but very important for applications such as organic light-emitting diodes. This relation is studied using first-principles calculations on various surfaces of BaAl4. The most stable surface [Ba terminated (001)] has the lowest Phi (1.95 eV), which is lower than that of any elemental metal including Ba. Adding barium to this surface neither increases its stability nor lowers its work function. BaAl4 is also strongly bound. These results run counter to the common perception that stability and a low Phi are incompatible. Furthermore, a large anisotropy and a stable low-work-function surface are predicted for intermetallic compounds with polar surfaces.Comment: 4 pages, 5 figures, to be published in Chem. Ma

    NMR shieldings from density functional perturbation theory: GIPAW versus all-electron calculations

    Get PDF
    We present a benchmark of the density functional linear response calculation of NMR shieldings within the Gauge-Including Projector-Augmented-Wave method against all-electron Augmented-Plane-Wave++local-orbital and uncontracted Gaussian basis set results for NMR shieldings in molecular and solid state systems. In general, excellent agreement between the aforementioned methods is obtained. Scalar relativistic effects are shown to be quite large for nuclei in molecules in the deshielded limit. The small component makes up a substantial part of the relativistic corrections.Comment: 3 figures, supplementary material include

    Band Offsets at the Interface between Crystalline and Amorphous Silicon from First Principles

    Get PDF
    The band offsets between crystalline and hydrogenated amorphous silicon (a-Si:H) are key parameters governing the charge transport in modern silicon hetrojunction solar cells. They are an important input for macroscopic simulators that are used to further optimize the solar cell. Past experimental studies, using X-ray photoelectron spectroscopy (XPS) and capacitance-voltage measurements, have yielded conflicting results on the band offset. Here we present a computational study on the band offsets. It is based on atomistic models and density-functional theory (DFT). The amorphous part of the interface is obtained by relatively long DFT first-principles molecular-dynamics (MD) runs at an elevated temperature on 30 statistically independent samples. In order to obtain a realistic conduction band position the electronic structure of the interface is calculated with a hybrid functional. We find a slight asymmetry in the band offsets, where the offset in the valence band (0.30 eV) is larger than in the conduction band (0.17 eV). Our results are in agreement with the latest XPS measurements that report a valence band offset of 0.3 eV [M. Liebhaber et al., Appl. Phys. Lett. 106, 031601 (2015)]

    Band Offsets at the Interface Between Crystalline and Amorphous Silicon from First Principles

    Get PDF
    The band offsets between crystalline and hydrogenated amorphous silicon (a−Si∶H) are key parameters governing the charge transport in modern silicon heterojunction solar cells. They are an important input for macroscopic simulators that are used to further optimize the solar cell. Past experimental studies, using x-ray photoelectron spectroscopy (XPS) and capacitance-voltage measurements, have yielded conflicting results on the band offset. Here, we present a computational study on the band offsets. It is based on atomistic models and density-functional theory (DFT). The amorphous part of the interface is obtained by relatively long DFT first-principles molecular-dynamics runs at an elevated temperature on 30 statistically independent samples. In order to obtain a realistic conduction-band position the electronic structure of the interface is calculated with a hybrid functional. We find a slight asymmetry in the band offsets, where the offset in the valence band (0.29 eV) is larger than in the conduction band (0.17 eV). Our results are in agreement with the latest XPS measurements that report a valence-band offset of 0.3 eV [M. Liebhaber et al., Appl. Phys. Lett. 106, 031601 (2015)]

    First-principles study of the optical properties of MgxTi(1-x)H2

    Get PDF
    The optical and electronic properties of Mg-Ti hydrides are studied using first-principles density functional theory. Dielectric functions are calculated for MgxTi(1-x)H2 with compositions x = 0.5, 0.75, and 0.875. The structure is that of fluorite TiH2 where both Mg and Ti atoms reside at the Ti positions of the lattice. In order to assess the effect of randomness in the Mg and Ti occupations we consider both highly ordered structures, modeled with simple unit cells of minimal size, and models of random alloys. These are simulated by super cells containing up to 64 formula units (Z = 64). All compositions and structural models turn out metallic, hence the dielectric functions contain interband and intraband free electron contributions. The former are calculated in the independent particle random phase approximation. The latter are modeled based upon the intraband plasma frequencies, which are also calculated from first-principles. Only for the models of the random alloys we obtain a black state, i.e. low reflection and transmission in the energy range from 1 to 6 eV.Comment: 7 pages, 8 figure

    Modeling and analysis of the three-dimensional current density in sandwich-type single-carrier devices of disordered organic semiconductors

    Get PDF
    We present the results of a modeling study of the three-dimensional current density in single-carrier sandwich-type devices of disordered organic semiconductors. The calculations are based on a master-equation approach, assuming a Gaussian distribution of site energies without spatial correlations. The injection-barrier lowering due to the image potential is taken into account, so that the model provides a comprehensive treatment of the space-charge-limited current as well as the injection-limited current (ILC) regimes. We show that the current distribution can be highly filamentary for voltages, layer thicknesses, and disorder strengths that are realistic for organic light-emitting diodes and, that, as a result, the current density in both regimes can be significantly larger than as obtained from a one-dimensional continuum drift-diffusion device model. For devices with large injection barriers and strong disorder, in the ILC transport regime, good agreement is obtained with the average current density predicted from a model assuming injection and transport via one-dimensional filaments.

    Ab initio simulations of liquid systems: Concentration dependence of the electric conductivity of NaSn alloys

    Full text link
    Liquid NaSn alloys in five different compositions (20, 40, 50, 57 and 80% sodium) are studied using density functional calculations combined with molecular dynamics(Car-Parrinello method). The frequency-dependent electric conductivities for the systems are calculated by means of the Kubo-Greenwood formula. The extrapolated DC conductivities are in good agreement with the experimental data and reproduce the strong variation with the concentration. The maximum of conductivity is obtained, in agreement with experiment, near the equimolar composition. The strong variation of conductivity, ranging from almost semiconducting up to metallic behaviour, can be understood by an analysis of the densities-of-states.Comment: LaTex 6 pages and 2 figures, to appear in J.Phys. Cond. Ma

    Ab initio simulations of liquid NaSn alloys: Zintl anions and network formation

    Full text link
    Using the Car-Parrinello technique, ab initio molecular dynamics simulations are performed for liquid NaSn alloys in five different compositions (20, 40, 50, 57 and 80 % sodium). The obtained structure factors agree well with the data from neutron scattering experiments. The measured prepeak in the structure factor is reproduced qualitatively for most compositions. The calculated and measured positions of all peaks show the same trend as function of the composition.\\ The dynamic simulations also yield information about the formation and stability of Sn4_4 clusters (Zintl anions) in the liquid. In our simulations of compositions with 50 and 57 % sodium we observe the formation of networks of tin atoms. Thus, isolated tin clusters are not stable in such liquids. For the composition with 20 % tin only isolated atoms or dimers of tin appear, ``octet compounds'' of one Sn atom surrounded by 4 Na atoms are not observed.Comment: 12 pages, Latex, 3 Figures on reques
    • …
    corecore