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Low work function of the „1000… Ca2N surface
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NSRIM, Toernooiveld 1, 6525 ED, Nijmegen, The Netherlands

(Received 17 November 2003; accepted 12 May 2004)

Polymer diodes require cathodes that do not corrode the polymer but do have low work function to
minimize the electron injection barrier. First-principles calculations demonstrate that the work
function of thes1000d surface of the compound Ca2N is half an eV lower than that of the elemental
metal Ca(2.35 vs 2.87 eV). Moreover, its reactivity is expected to be smaller. This makes Ca2N an
interesting candidate to replace calcium as cathode material for polymer light emitting diode
devices. ©2004 American Institute of Physics. [DOI: 10.1063/1.1767611]

One of the great challenges for polymer light emitting
diodes is the electron injection barrier as well as the perfor-
mance degradation caused by chemical reactions of the cath-
ode with the polymer.1 State-of-the-art devices2 use
PPV(poly phenylene vinylene) as electro luminescence ma-
terial. Often the cathode is made out of calcium, because of
its low work function3 s2.87 eVd and the presumed align-
ment of its Fermi level with the lowest unoccupied molecular
orbital of PPV(electron affinity 2.73−2.8 eV).4,5 Biases ac-
tually used are much higher than the optical band gap of PPV
s2.4 eVd (Ref. 6), namely, in the order of 10 V,1 which sug-
gests that there is some barrier formation between the cath-
ode and the polymer. This is further confirmed by the obser-
vation that the decrease of performance is much less for
devices in which the cathode is formed at a small residual
oxygen pressure.7 In such a device some oxidation prevents
reaction of the cathode with the polymer.

It would be a major breakthrough when stable, low work
function metals are found. Subnitrides are fascinating candi-
dates because, as in the case of cesium suboxides,8,9 it is
expected that through quantum confinement their work func-
tions are lower than those of the elemental metals while at
the same time ionic bonding reduces reactivity.

The Ca2N crystal10 and electronic structure(bulk and
single slab) (Ref. 11) are known. It is an ionic compound,
built out of slabs of alternatingsCa-N-Cad hexagonal layers.
The interslab distance between Ca layers is 3.81Å and Ca
layers inside a slab are only 2.45Å apart. This is much
smaller than the ordinary fcc Cas111d layer distance
s3.18Åd and can be attributed to the ionic binding. The band
structure shows fully occupied N 2s and N 2p states and a
quasi two-dimensional(2D) free-electron state in the space
between the slabs which further confirms the idea that this is
an ionic compound.

In this paper the Ca2N work function sFd and surface
energy sESd are determined for both thes0001d and the
s1000d surface. An indication of the materials stability is
obtained from its binding energy and degree of surface re-
laxation.

First-principles calculations were carried out based on
density functional theory in the local density
approximation12,13 with generalized gradient corrections.14

The total energy and molecular dynamics programVASP (Vi-

ennaAb initio Simulation Package)15,16 was used which has
the projector augmented wave method17,18 implemented.
Nonlinear core corrections19 were applied for calcium. The
unit cells contained 18 and 42 atoms for thes0001d and the
s1000d surfaces, respectively. The Kohn-Sham orbitals were
expanded in plane waves with cutoffs of 37 Ry. 12312
31 and 131234 Monkhorst-Pack21 k point grids, respec-
tively, were used to sample the Brillouin zones resulting in
74 and 26k points, respectively, in their irreducible parts.

F is defined as the minimum amount of energy it costs
to extract an electron from a metal. The fact that it depends
on the type of surface is somewhat counter intuitive, it seems
to contradict the conservation of energy. However, the differ-
ences in work function are compensated by differences in
kinetic energy of the electron at large distances.22

In order to determineF, two numbers are needed: the
maximum energy of an electron inside the material, defined
to be the Fermi levelsEFd, and the minimum energy outside
the material, the vacuum potential. Because in a finite slab
calculationEF cannot be accurately determined, this number
is first obtained from a bulk calculation. Then for the finite
slab the average potential of the middle layers(which is an
accurate quantity) must be aligned with that of the bulk.23 In
this way the work function for thes0001d surface is deter-
mined using six slabs of Ca-N-Ca and 19Å of vacuum.24 It
can be extracted from Fig. 1 and equals 3.43 eV.

Another unit cell was made to findF for the s1000d
surface of Ca2N. It contained 14 layers and 20Å of vacuum.
At this surface several bonds are severed and it is necessary
to relax the atomic positions. The result is shown in Fig. 2
where the view is along the displacement vector from one
slab to the next. The nitrogen atoms at the surface are dis-
placed a littles0.24Åd inwards, the nitrogens in the second
layer a little s0.17Åd outwards, while the surface calciums
tend to move in the direction of the surface nitrogens. This
can be understood from an ionic point of view. Nitrogen
favors an environment of high electron density while cal-
cium shows the opposite trend. Although the structure has
changed very little, the effect of the relaxation onF is sub-
stantial(Fig. 3). Before relaxation we find a work function of
2.56 eV, already lower than that of pure calcium, but after
relaxation it has even decreased to 2.35 eV. Not only is this
comparable to the smallest work function for an element(Cs,
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2.14 eV),3 but also the difference of 1.08 eV with thes0001d
surface is larger than that between any two surfaces of
tungsten,25 which is known for its large work function aniso-
tropy. Both the drop inF after relaxation and the large
surface-anisotropy can be explained by the Smoluchowski
model26 and not by quantum confinement as this is a bulk
model that does not say anything about anisotropies and/or
relaxation. According to Smoluchowski on the other hand,
the more “open” a surface is the more the charge density can
be smoothed, and this lowersF. However, more-open sur-
faces tend to have higher surface energies27 and this makes
them less stable. For thes0001d and(relaxed) s1000d surface
we find ES is 2.7 and 5.3 eV/nm2, respectively, which con-
firms the trend.

Because in Ref. 10 it is suggested Ca2N can also be
made with a largerc axis(interslab separation), we examined
whether this changes thes1000d work function. After enlarg-
ing c with 2% and subsequent relaxation of the atoms, the
structural changes are small and the trends already indicated
are a little more pronounced. The slab thickness, however,
has decreased to almosts+0.5%d its former value. The aver-
aged charge density and local potential are plotted in Fig. 4.
Before relaxationF is decreased from 2.35 to 2.24 eV, but

relaxation increases it again to 2.35 eV. Again this is in ac-
cordance with the Smoluchowski trend because a thicker
slab makes the surface more open. We conclude that the
work function does not(significantly) change whenc is en-
larged.

Finally, the reactivity of Ca2N is briefly discussed. In-
spection of the binding energy shows that it is 5.6 eV per
formula unit (with respect to half a nitrogen molecule and
two calcium atoms) for a single slab and 0.6 eV more for the
bulk. This gives evidence that the reactivity of Ca2N is
smaller than that of calcium, of which the binding energy is
just 1.9 eV per atom. It was shown earlier that relaxation of
the atomic positions after bonds are cut orc is enlarged, does
not have a substantial effect on the structure. These facts
taken together give an indication that the reactivity of this
subnitride is less than that of pure calcium, although it is still
air sensitive.10

In summary, using first-principles calculations, we have

FIG. 2. Atomic positions after relaxation of thes1000d surface as seen from
the s1206d direction. Dark circles are nitrogens and light ones calcium.

FIG. 3. Charge densities averaged overs1000d planes(arbitrary units) and
potentials(relative toEF, eV) averaged overs1000d planes and bulk unit
cells, for both the relaxed(solid lines) and the unrelaxed(dashed lines)
structure as function of positionsÅd. The potentials converge to 2.35 eV and
2.56 eV in the vacuum, respectively. The horizontal line is the average bulk
potential.

FIG. 4. Charge densities averaged overs1000d planes(arb. units) and po-
tentials(relative toEF, eV) averaged overs1000d planes and bulk unit cells,
for both the relaxed(solid lines) and the unrelaxed(dashed lines) structure
for a 2% largerc axis as function of positionsÅd. The potentials converge to
2.35 eV and 2.24 eV in the vacuum, respectively. The horizontal line is the
average bulk potential and it can be seen that relaxation has no observable
effect on the charge density.

FIG. 1. Charge density(dashed line, arb. units) averaged overs0001d planes
and potentials(relative toEF, eV) averaged overs0001d planes and bulk unit
cells (solid/dotted lines, respectively) as function of positionsÅd. The hori-
zontal line at −3.83 eV refers to the average bulk potential.
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shown that the work function of Ca2N has an anisotropy of
more than 1 eV, with a minimum of 2.35 eV(cf. Ca, F
=2.87 eV) for the s1000d surface. Its surface energy
s5.3eV/nm2d, however, is almost the double of that of the
s0001d surface. The low work function does not(signifi-
cantly) depend on the interslab separation and we argued that
this material is not as reactive as calcium. The lower work
function and reduced reactivity make Ca2N a promising
metal to replace Ca in cathodes of polymer light emitting
diodes.
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