176 research outputs found

    Nontarget host utilization of thistle species by introduced biological control agents and spatial prediction of non-target feeding habitats

    Get PDF
    Rhinocyllus conicus Fröelich and Trichosirocalus horridus (Panzer) were introduced from Europe into North America as biological control agents of the exotic weed species Carduus nutans L. Concern exists over the feeding of these weevils on at least 25 species of native Cirsium thistles. Research was conducted to 1) estimate phenological synchrony of the eight thistle species in Tennessee with R. conicus and T. horridus, 2) investigate naturally-occurring populations of the five native Cirsium thistle species for non-target activity by R. conicus and T. horridus, 3) quantify the impacts to plants of each thistle species to feeding of R. conicus and T. horridus, and 4) identify potential areas of non-target feeding by the weevils using spatial analysis. Phenologies of two native species, C. carolinianum and C. horridulum, are synchronous with R. conicus reproduction, and all eight thistle species are phenologically synchronous with the reproduction of T. horridus. No non-target activity by R. conicus was observed in naturally-occurring populations of Cirsium thistles, but adults of T. horridus were documented for the first time on the native species C. carolinianum, C. horridulum, and C. muticum. In caged plant studies, larvae of R. conicus completed development in heads of C. carolinianum and C. horridulum and reduced seed numbers of both native species. Basal meristems of all eight thistle species exposed to T. horridus were damaged at varying levels in caged plant studies, but no other impacts to plants were observed. Spatial analyses showed associations between Mahalanobis distance values and plant counts of Carduus nutans and Cirsium carolinianum in predicted habitats, and the occurrence of Carduus nutans was associated with the occurrence of both weevil species in these habitats. About 12% of the total study area consisted of habitats where C. nutans and Cirsium carolinianum overlap. The potential exists for these weevils to utilize native Cirsium species found in Tennessee as plant hosts. The spatial model developed during this study not only allows potential monitoring of populations of C. carolinianum to be more targeted, but also may be modified to apply to other systems involving interactions among introduced and native species

    Regression: Tree Rings and Measuring Things (High School)

    Get PDF

    Modeling an Ironman Race (High School)

    Get PDF

    Running the Same Pace During a Marathon (High School)

    Get PDF

    “Leveling Up” In Your Favorite Video Game Math Modeling Activity (Middle School)

    Get PDF
    In this activity, students will write linear equations that represent their situations and determine the intersection of their lines. The students will also graph their equations and discuss potential flaws

    Isomerization dynamics of a buckled nanobeam

    Full text link
    We analyze the dynamics of a model of a nanobeam under compression. The model is a two mode truncation of the Euler-Bernoulli beam equation subject to compressive stress. We consider parameter regimes where the first mode is unstable and the second mode can be either stable or unstable, and the remaining modes (neglected) are always stable. Material parameters used correspond to silicon. The two mode model Hamiltonian is the sum of a (diagonal) kinetic energy term and a potential energy term. The form of the potential energy function suggests an analogy with isomerisation reactions in chemistry. We therefore study the dynamics of the buckled beam using the conceptual framework established for the theory of isomerisation reactions. When the second mode is stable the potential energy surface has an index one saddle and when the second mode is unstable the potential energy surface has an index two saddle and two index one saddles. Symmetry of the system allows us to construct a phase space dividing surface between the two "isomers" (buckled states). The energy range is sufficiently wide that we can treat the effects of the index one and index two saddles in a unified fashion. We have computed reactive fluxes, mean gap times and reactant phase space volumes for three stress values at several different energies. In all cases the phase space volume swept out by isomerizing trajectories is considerably less than the reactant density of states, proving that the dynamics is highly nonergodic. The associated gap time distributions consist of one or more `pulses' of trajectories. Computation of the reactive flux correlation function shows no sign of a plateau region; rather, the flux exhibits oscillatory decay, indicating that, for the 2-mode model in the physical regime considered, a rate constant for isomerization does not exist.Comment: 42 pages, 6 figure

    Phase Space Structures Explain Hydrogen Atom Roaming in Formaldehyde Decomposition

    Get PDF
    We re-examine the prototypical roaming reaction—hydrogen atom roaming in formaldehyde decomposition—from a phase space perspective. Specifically, we address the question “why do trajectories roam, rather than dissociate through the radical channel?” We describe and compute the phase space structures that define and control all possible reactive events for this reaction, as well as provide a dynamically exact description of the roaming region in phase space. Using these phase space constructs, we show that in the roaming region, there is an unstable periodic orbit whose stable and unstable manifolds define a conduit that both encompasses all roaming trajectories exiting the formaldehyde well and shepherds them toward the H2···CO well

    Health and Occupational Injury Experienced by Latinx Child Farmworkers in North Carolina, USA

    Get PDF
    Children as young as 10 years old are hired to work on farms in the United States (U.S.). These children are largely Latinx. Using interview data collected from 202 North Carolina Latinx child farmworkers in 2017, this analysis documents the heath characteristics and occupational injuries of Latinx child farmworkers and delineates characteristics associated with their health and occupational injuries. Latinx child farmworkers include girls (37.6%) and boys (62.4%), aged 10 to 17 years, with 17.8% being migrant farmworkers. Three-quarters reported receiving medical and dental care in the past year. Respiratory (15.8%) and vision (20.3%) problems were prevalent. Girls more than boys, and younger more than older children had greater health service utilization. Occupational injuries were common, with 26.2% reporting a traumatic injury, 44.1% a dermatological injury, 42.6% a musculoskeletal injury, and 45.5% heat-related illness in the past year. Age increased the odds of reporting work injuries and heat-related illness, and being a non-migrant reduced the odds of reporting work injuries. These results emphasize the need for greater documentation of child farmworker occupational health and safety. They underscore the need to change occupational safety policy to ensure that children working in agriculture have the same protections as those working in all other U.S. industries

    Phase space geometry and reaction dynamics near index two saddles

    Full text link
    We study the phase space geometry associated with index 2 saddles of a potential energy surface and its influence on reaction dynamics for nn degree-of-freedom (DoF) Hamiltonian systems. For index 1 saddles of potential energy surfaces (the case of classical transition state theory), the existence of a normally hyperbolic invariant manifold (NHIM) of saddle stability type has been shown, where the NHIM serves as the "anchor" for the construction of dividing surfaces having the no-recrossing property and minimal flux. For the index 1 saddle case the stable and unstable manifolds of the NHIM are co-dimension one in the energy surface, and act as conduits for reacting trajectories in phase space. The situation for index 2 saddles is quite different. We show that NHIMs with their stable and unstable manifolds still exist, but that these manifolds by themselves lack sufficient dimension to act as barriers in the energy surface. Rather, there are different types of invariant manifolds, containing the NHIM and its stable and unstable manifolds, that act as co-dimension one barriers in the energy surface. These barriers divide the energy surface in the vicinity of the index 2 saddle into regions of qualitatively different trajectories exhibiting a wider variety of dynamical behavior than for the case of index 1 saddles. In particular, we can identify a class of trajectories, which we refer to as "roaming trajectories", which are not associated with reaction along the classical minimum energy path (MEP). We illustrate the significance of our analysis of the index 2 saddle for reaction dynamics with two examples.Comment: 43 pages, 4 figure
    • …
    corecore