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ABSTRACT 

Rhinocyllus conicus Fröelich and Trichosirocalus horridus (Panzer) were 

introduced from Europe into North America as biological control agents of the exotic 

weed species Carduus nutans L.  Concern exists over the feeding of these weevils on at 

least 25 species of native Cirsium thistles.  Research was conducted to 1) estimate 

phenological synchrony of the eight thistle species in Tennessee with R. conicus and T. 

horridus, 2) investigate naturally-occurring populations of the five native Cirsium thistle 

species for non-target activity by R. conicus and T. horridus, 3) quantify the impacts to 

plants of each thistle species to feeding of R. conicus and T. horridus, and 4) identify 

potential areas of non-target feeding by the weevils using spatial analysis.  Phenologies of 

two native species, C. carolinianum and C. horridulum, are synchronous with R. conicus 

reproduction, and all eight thistle species are phenologically synchronous with the 

reproduction of T. horridus.  No non-target activity by R. conicus was observed in 

naturally-occurring populations of Cirsium thistles, but adults of T. horridus were 

documented for the first time on the native species C. carolinianum, C. horridulum, and 

C. muticum.  In caged plant studies, larvae of R. conicus completed development in heads 

of C. carolinianum and C. horridulum and reduced seed numbers of both native species. 

Basal meristems of all eight thistle species exposed to T. horridus were damaged at 

varying levels in caged plant studies, but no other impacts to plants were observed. 

Spatial analyses showed associations between Mahalanobis distance values and plant 

counts of Carduus nutans and Cirsium carolinianum in predicted habitats, and the 

occurrence of Carduus nutans was associated with the occurrence of both weevil species 

in these habitats. About 12% of the total study area consisted of habitats where C. nutans 
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and Cirsium carolinianum overlap. The potential exists for these weevils to utilize native 

Cirsium species found in Tennessee as plant hosts. The spatial model developed during 

this study not only allows potential monitoring of populations of C. carolinianum to be 

more targeted, but also may be modified to apply to other systems involving interactions 

among introduced and native species. 
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CHAPTER I. LITERATURE REVIEW 

Invasive Species 

Overview of Invasive Species 
 

Throughout natural history, cycles of species immigrations have resulted in 

fluctuations in species diversity at any given time (Elton 1958, Brown and Lomolino 

1998).  However, recent human population growth and subsequent global commerce 

activities, in combination with wide-spread environmental modifications by humans, 

have promoted many introductions of species from their native ranges into new areas 

(Elton 1958, Davis 2003, Perrings et al. 2005a).  Accordingly, one of the major threats to 

global biological diversity and contributors to global environmental change is human-

induced introductions of non-native (i.e., “introduced” or “exotic”) species into new areas 

(Vitousek et al. 1997, Davis 2003).  

Whether these introductions are intentional or accidental, a fraction of the newly-

introduced species may become problematic, and these problematic introduced species 

are often referred to as “invasive” species. Because many species that are prone to 

becoming an invasive species are disturbance-adapted (with traits such as broad diets or 

tolerances, rapid dispersal, and high reproduction rates), the alteration and modification 

of areas by human activities provide a source of establishment for these introduced 

species, while simultaneously discouraging endemic or native species (Elton 1958, 

McKinney and Lockwood 1999).  These characteristics, coupled with the lack of biotic 

and abiotic factors that may suppress population levels in their native ranges, allow 

invasive species to rapidly increase in population size, disperse into new areas, and 

negatively impact economically important or ecologically sensitive species.   
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Although many episodes of natural species introductions have occurred 

throughout history, they were usually sporadic events separated by long periods of time 

(thousands of years).  However, human activities, such as global trade, provide a 

continuous means to transfer species from one area to another, so that many more species 

are introduced to new areas than would usually occur (Sauer 1998, Ewel et al. 1999).  An 

estimated 50,000 species have been introduced into the U.S. (Pimentel et al. 2000). The 

current rates of species introductions are comparable to rarely-occurring events in natural 

history. An example of one such event is the Great American Interchange when the 

Isthmus of Panama emerged as a land bridge linking the North and South American 

continents, allowing once-isolated species to disperse into new areas en masse (Brown 

and Sax 2004). Therefore, invasive species and their effects on human health and 

activities, as well as natural areas, are the subject of increasing scrutiny and study 

(Vitousek et al. 1997, Christian 2001, Brown and Sax 2004, Lockwood et al. 2007).  The 

concern over invasive species prompted the issuing of Executive Order 13112, which 

outlined the actions of Federal agencies to prevent and manage invasive species, formed 

the Invasive Species Council to address current and future issues related to invasive 

species, and mandated a National Invasive Species Management Plan to provide a 

uniform set of guidelines and recommendations related to invasive species for Federal 

agencies (Clinton 1999). 

Economic Impacts of Invasive Species 

While species introductions can become problematic, not all introduced species 

are invasive, become harmful, or are viewed as detrimental.  Over 98% of the human 

food supply comes from species, such as wheat, rice, corn, cattle, and poultry, which 
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have been moved from their initial native ranges and introduced throughout the globe 

specifically for food production (Ewel et al. 1999, Pimentel et al. 2001). Invasive species 

can have detrimental economic effects on these agricultural species, as well as many 

other species, in areas where they become established.   

The total monetary costs associated with invasive species, however, can be 

difficult to ascertain. Often, the economic impacts of invasive species are estimated based 

on the damage inflicted to products or commodities by invasive species or the cost of 

management and control efforts (Perrings et al. 2000, Perrings et al. 2005a).  Estimates 

that combine damage and control costs to quantify total yearly losses in the U.S. due to 

introduced species have ranged from $1.1 billion to more than $130 billion annually, with 

the variations in estimates due to inclusion of differing numbers of species and variable 

damage and control costs for some of the species included in the cost estimate (US OTA 

1993, Pimentel et al. 2000, Costello and McAusland 2003).  In New Zealand, which has 

the greatest number of introduced mammals and the second greatest number of 

introduced bird species of any nation in the world, economic impacts of introduced pests 

that include economic losses, in addition to control and prevention costs, are estimated at 

more than $420 million annually (Williams and Timmins 2002). Invasive species that 

directly impact important commodities or industries lend themselves to these types of 

impact estimates, because market values and/or management expenditures are well 

documented. For example, introduced insect pests are estimated to cost crop producers in 

the U.S. ca $14.4 billion annually, based on the known number of introduced insect pests, 

losses in crop production, and costs of control measures (Pimentel et al. 2001).  However, 

because estimates of this sort depend heavily on invasive species that are pests of 
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commodities, criticism has arisen that ecological impacts are overlooked based on their 

difficulty to valuate (Perrings et al. 2005a). 

Attempts to include indirect or non-production related costs in estimates of 

economic impacts of invasive species are underway.  For example, both agricultural and 

non-agricultural values were used to estimate the total cost of impact of star thistle, 

Centaurea solstitialis L., in Idaho rangelands (Julia et al. 2007). This estimate calculated 

the reduction of the livestock carrying capacity of a pasture (agricultural) and the 

reduction in wildlife habitat and water quality (non-agricultural) in relation to infestations 

of star thistle.  The total economic impact was calculated at $12.7 million per year, with 

79% attributed to agricultural impacts and 21% attributed to non-agricultural impacts 

(Julia et al. 2007).   

Nevertheless, calculating economic impacts of invasive species associated with 

natural or low-economic value systems can be challenging, because it is difficult to place 

a value on species that are not of economic importance (Perrings et al. 2000).  One option 

is to quantify the products, functions, or services of the system affected by invasive 

species (Heywood 1995, Daily et al. 1997).  Turpie and Heydenrych (2000) categorized 

the total economic value of natural resources found in Fynbos, a species-diverse biome in 

the Cape Floral Kingdom of southwestern South Africa. By placing monetary values on 

naturally-occurring “products”, such as herbaceous plants collected from Fynbos (ca. 

$1.4 million), in addition to ecosystem functions and services, such as pollination 

services by native bees (ca. $69 million) and contributions of native plants to soil 

stabilization and water quality and availability (ca. $22 million), potential economic 

impacts to non-production natural areas by invasive plants could be estimated (Turpie 
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and Heydenrych 2000).  One important consideration is that while the valuation of 

ecological functions and processes may be useful in economically evaluating the impacts 

of invasive species and increase the importance of invasive species to policy makers 

and/or the general public, ecological impacts are themselves important, whether or not 

they can be assigned a monetary value (Perrings et al. 2005a).  

Ecological Impacts of Invasive Species 

The impact of invasive species on natural systems can range greatly. The initial 

impacts of invasive species occur on individuals at the population level.  While 

competition among invasive and native species may reduce native populations, factors 

such as herbivory and predation are much more common in reducing or eliminating 

localized populations (Davis 2003). Excessive predation or herbivory, especially to 

species that have low numbers or limited populations, may result in extinction. 

Invasive species are a leading cause of extinctions of birds, fish, and mammals 

(Clavero and Garcia-Berthou 2005).  Invasive species are suspected to have contributed 

to the extinction of 78 endemic pollinating insects in Hawaii (Cox and Elmqvist 2000). 

The brown tree snake, Boiga irregularis (Merrem), which was accidentally introduced in 

Guam shortly after World War II, is a classic example of the impact of an introduced 

predator on an island. Since its introduction, 10 of 13 native bird species and two of the 

three native mammals have become extinct on the island (Rodda et al. 1997, Fritts and 

Rodda 1998, Wiles et al. 2003).  

Less obvious are extinctions through hybridization and/or introgression.  

Hybridization is interbreeding of individuals of genetically distinct populations, while 

introgression is mixing of gene pools of populations that have hybridized by hybrids 
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backcrossing to one or more parental population.  For example, the endemic Florida 

mottled duck, Anas fulvigula fulvigula Ridgway, may become genetically extinct through 

introgression due to breeding with the introduced mallard duck, A. platyrhynchos L. 

(Rhymer and Simberloff 1996).   The Pecos pupfish, Cyprinodon pecosensis Echelle and 

Echelle, has become genetically extinct through hybridization due to the release of 

minnows used as bait fishes by fishermen in the U.S. (Echelle and Connor 1989, Mack et 

al. 2000).  

Although extinction is the ultimate impact one species can have on another, 

invasive species also can affect the structure and composition of localized animal and 

plant communities.  Before the invasion of the Argentine ant, Linepithema humile 

(Mayr), into areas of northern California, native ant communities were spatially and 

ecologically segregated.  The introduction of L. humile into these communities acted as a 

disturbance factor and disassembled the community structure of the native ants, making 

them less segregated and more randomly distributed in areas where L. humile was 

established (Sanders et al. 2003).  In the northeastern U.S., the introduced Norway maple, 

Acer platanoides L., is gradually replacing native hardwoods in some forest stands.  In 

the Drew University Forest Reserve, New Jersey, Norway maple accounted for 98% of 

woody seedlings in study plots, while the native species (sugar maple, A. saccharum 

Marshall, and American beech, Fagus grandifolia Ehrhart) only comprised 2.00% and 

0.05%, respectively (Wyckoff and Webb 1996, Sauer 1998).  

In some cases, changes caused by an invasive species can grow beyond a local 

community and expand to impact entire ecosystems. For example, the hemlock woolly 

adelgid, Adelges tsugae Annand, is an insect of Asian origin that was first documented in 
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the eastern U.S. in 1951 (Cheah et al. 2004). Feeding by this invasive insect on eastern 

hemlock, Tsuga canadensis (L.) Carierre, eventually results in the death of the tree, 

usually in three to ten years (McClure 2001, Orwig 2002).  Initially, deaths of individual 

trees were in small localized areas. However, the hemlock woolly adelgid continues to 

spread and currently infests hemlock in over 50% of its range, causing mass mortality of 

this tree species across large areas (Cheah et al. 2004).  These mass mortalities impact the 

forest ecosystems associated with eastern hemlock by changing forest composition, soil 

chemistry, and stream systems that flow through these forests (Orwig and Foster 1998, 

Snyder et al. 2002, Stadler et al. 2005, Roberts 2006).   

Management of Invasive Species 

The first line of defense against invasive species is guarding against the import of 

unwanted species.  Accordingly, many countries have established regulations that restrict 

the importation of various invasive species. Members of the World Trade Organization 

(WTO) must adhere to the Sanitary and Phytosanitary Agreement (SPS), which 

establishes measures to protect human, animal, and plant health (WTO 1995, Smith 

2003).  In the U.S., the U.S. Department of Agriculture (USDA) Animal and Plant Health 

Inspection Service (APHIS) oversees many of the regulatory efforts related to agriculture 

and natural resources, such as inspection of imported materials, monitoring for 

quarantined and other pests of interest, enforcing import or quarantine violations, etc. 

(Kreith and Golino 2003).  The monitoring efforts of APHIS are of great importance, as 

early detection of an invasive species may prevent its establishment or facilitate 

management against it (Wittenberg and Cock 2005). 
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While these regulations are useful, concerns regarding their effectiveness exist.  

First, to gain compliance with the SPS, any restriction on the importation of a potential 

commodity must be justified by a risk assessment, or the evaluation of a species’ 

potential to cause damage (Smith 2003).  The SPS requires that a species be proven 

invasive by the importing country, rather than requiring the exporter to prove that it is 

safe to export (Smith 2003, Simberloff 2005).  In some cases, if the species is of great 

economic value and the risk assessment does not conclusively show that it is invasive, the 

importing country is required to allow the species to be traded (Perrings et al. 2005b, 

Simberloff 2006).  So, while trade regulations such as these provide some framework for 

protection against invasive species, they may be limited in their regulatory power if the 

species of interest is of great economic value, thereby allowing questionable species to be 

imported and potentially to become invasive.    

 When species do enter a country, either purposely or accidentally, often there is 

no action taken to manage an introduced species when it is detected in a new area 

(Simberloff 2002). This inaction may be justified, because not all introduced species that 

establish in an area become invasive (Williamson 1996, Lockwood et al. 2007). So, even 

if an introduced species is detected in an area, no management action may be taken, 

because it does not exhibit invasive characteristics.  By managing only those species that 

exhibit invasive traits or have a history of invading other areas, management funds and 

resources may be directed towards those species known to be problematic, to prevent 

their spread or reduce their impact (Sauer 1998).  

 For some populations of invasive species, eradication, or the elimination of the 

species from the infested area, may be a feasible management option.  Many eradication 
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programs have involved the elimination of human or animal diseases, such as Anopheles 

gambiae (Giles), a vector of human malaria, from Brazil, smallpox worldwide and 

primary screw-worm, Cochliomyia hominivorax (Coquerel), from the U.S. (Simberloff 

2003). Eradication programs against pests of natural areas, such as the red imported fire 

ant, Solenopsis invicta Buren, from New Zealand and Taurian thistle, Onopordum 

tauricum Willdenow, from Victoria, Australia, also have been successful (Simberloff 

2003, Sarty 2007, Liebhold and Tobin 2008).  However, eradication efforts are often 

perceived as too costly and have a tarnished reputation due to some failed programs, such 

as the ineffective and costly ($200 million) attempt to eradicate S. invicta in the 

southeastern U.S. (Mack et al. 2000, Simberloff 2002).  If eradication efforts are not 

implemented or are attempted but not effective, then invasive species must be managed to 

reduce their population levels as low as possible. 

 Chemical pesticides are commonly used to manage introduced agricultural pests, 

as well as invasive species in some natural areas (Sauer 1998, Mack et al. 2000).  

Although chemical pesticides may effectively control an invasive species, the high cost 

of materials and necessity of repeated treatments make chemical applications against 

invasive species across large natural areas impractical (Mack et al. 2000, Wittenberg and 

Cock 2005).  Resistance to pesticides also can occur, facilitating more applications, 

which increases costs, further making chemical treatments less feasible (Wittenberg and 

Cock 2005).  Despite these disadvantages, chemical treatments have been effective 

against some invasive species, such as applications of the herbicide 2, 4-D in 

combination with the physical removal (i.e., mechanical control) of the introduced 
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aquatic weed water hyacinth, Eichhornia crassipes (Martius), in Florida (Simberloff 

2002, Wittenberg and Cock 2005).   

 Mechanical control methods can range from removal of individuals by hand to the 

use of machines to harvest or remove large numbers of individuals.  The great advantage 

of mechanical control is that, in most cases, it is highly specific, and impacts on non-

target species are minimized (Simberloff 2002, Wittenberg and Cock 2005).  However, 

mechanical controls are often labor intensive and costly, especially across large areas.  

Also, as in the case of many plants, mechanical controls must be repeated often to exert a 

long-term impact on populations of invasive species (Mack et al. 2000, Wittenberg and 

Cock 2005).  The use of mechanical controls is, therefore, often restricted to confined 

infestations or areas where populations of invasive species are relatively accessible 

(Mack et al. 2000). 

The drawbacks of chemical and mechanical control methods enhance the appeal 

of biological control to manage invasive species.  Biological control is the suppression of 

the population of a species to levels at which it would not otherwise be by other living 

organisms (Eilenberg et al. 2001, Hajek 2004).  In natural systems, this population 

suppression occurs through predator-prey and/or disease-host interactions.  These 

interactions may be manipulated to be used in pest management scenarios.  Accordingly, 

organisms used in biological control are often natural enemies of the pest species, such as 

predators, parasites, parasitoids, and herbivores, that feed on the pest species or 

microorganisms, such as bacteria, fungi, and viruses, that can cause disease in the pest 

species (Eilenberg et al. 2001, Coombs and Coombs 2003).  The benefits of using natural 

enemies to manage pests are that, following release, populations of natural enemies may 
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grow and expand with host populations and can grow and disperse across large areas 

(Mack et al. 2000).  Additionally, established biological control agents are often self 

sustaining by fluctuating with host populations, potentially providing long-term control 

of pests (Bellows 2001). 

Classical Biological Control and Invasive Species 

While biological control can be implemented using several strategies, classical 

biological control, or the intentional introduction of an exotic biological control organism 

to permanently establish and control the pest long-term, is a strategy that has been used 

extensively (Eilenberg et al. 2001, Hajek 2004).  An invasive species introduced into new 

areas may thrive there, in part, due to lack of natural enemies present in its original range 

(Bellows 2001, Liu and Stiling 2006).  Classical biological control attempts to re-

construct part of the associated natural enemy complex that helps to regulate populations 

of the introduced species in its native home range by introducing biological control 

organisms from the pest’s region of origin (Hoddle 2004).  Two of the best examples of 

successful classical biological control programs were the introduction and establishment 

of the vedalia beetle, Rodolia cardinalis (Mulsant), against the cottony cushion scale, 

Icerya purchasi Maskell, in California beginning in the 1880s and the release of 

Cactoblastis cactorum (Bergroth) (a herbivorous moth) against prickly pear cactus 

(Opuntia spp.) in Australia in the 1920s (Gurr et al. 2000).  Both of these programs were 

successful, in that the biological control organisms established and have reduced and 

maintained pest populations at low levels since their initial introductions (Bellows and 

Hassell 1999).   
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Although numerous examples of successful classical biological control 

introductions exist (McFadyen 1998, Goeden and Andres 1999, Gurr and Wratten 2000, 

Bellows 2001), overall success rates of biological control releases are low. For example, 

33.5% of 5,576 introductions against insect pests from 1880 to 2001 became established, 

and 11.2% resulted in complete control of the target species (Gurr et al. 2000, Hajek 

2004). Likewise, 66.5% of 806 introductions against weeds established, and 26.7% 

resulted in complete control. The greater success of weed biological control agents is 

attributed, in part, to more extensive evaluation of the biological control agent prior to 

release (Hajek 2004).  Thus, extensive pre-release testing of biological control agents, as 

well as selecting organisms that are suitable targets for biological control programs have 

become increasingly emphasized (Ehler 1990, Bellows and Fisher 1999, Pemberton 

2002, Walter 2003, Hajek 2004). 

Perhaps the most serious drawback of biological control is the phenomenon of 

unintended attacks of biological control agents on native, non-target species (Follet and 

Duan 2000).  By attacking non-target species, biological control agents themselves can 

become pests of native species.  Ironically, the traits that make biological control 

desirable as a management tactic (ability to permanently establish, disperse, find new 

hosts, sustain population numbers, etc.) also make it virtually irreversible if non-target 

activity occurs (Howarth 1983, 1991).  In Hawaii, 8.6% of 175 established insect 

biological control agents also attacked native non-target species (Simberloff 1992).  

Some introductions of biological control agents have led to extinctions of native species, 

such as the predatory snail Euglandina rosea (Ferussac), a biological control agent of the 

giant African snail, Achatina fulica (Ferussac), causing the localized extinction of seven 
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endemic snail species in Tahiti (Clarke et al. 1984, Murray et al. 1988, Simberloff and 

Stiling 1996).  Despite these concerns, many critics of biological control in its current 

form still support its use as a management tactic against invasive species, provided that 

regulations regarding research and specificity testing are improved to be more rigorous 

and greater accountability for control programs is instituted (Howarth 1983, Simberloff 

and Stiling 1996, Ewel et al. 1999, Follet and Duan 2000, Mack et al. 2000).   

The issues associated with the beneficial and detrimental aspects of the use of 

biological control as a management strategy can complicate the management of invasive 

species.  One example of a classical biological control program that illustrates both 

positive and negative impacts of introduced biological control agents is the introduction 

of natural enemies against musk thistle, Carduus nutans L. 

A Model System: Musk Thistle and Introduced Biological Control Agents 

Overview of Musk Thistle Biological Control Program in North America 

 Musk thistle is a biennial herbaceous species in the family Asteraceae (subfamily 

Carduoideae, tribe Cardueae) native to Europe, western Asia, and the Mediterranean 

(Hodgson and Rees 1976, Zwölfer and Harris 1984, Garcias-Jacas et al. 2002, Judd et al. 

2002).  It was first introduced into North America in the mid-1800s (Stuckey and Forsyth 

1971) and is now recorded from 45 states and at least five Canadian provinces (McCarty 

1978, Desrochers et al. 1988, USDA 2008).  Musk thistle often grows in disturbed or 

overgrazed pastures and rangelands, along roadsides and right-of-ways, and other waste 

areas (Kok 2001, Gassmann and Kok 2002).  Individual plants can produce from ca. 

10,000 to 120,000 wind-dispersed seeds that can remain viable up to 20 years (Trumble 
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and Kok 1982, Kok 2001), providing abundant propagules for colonization of disturbed 

habitats.   

The introduction, establishment, and spread of this exotic invasive species 

throughout the U.S. have had both economic and environmental ramifications.  Its 

establishment in areas leads to increased management costs and reduced land 

productivity.  Musk thistle can reduce pasture yield by 23% at a density of one plant per 

1.49 m2 but can reach densities over 150,000 plants/ha (Gassmann and Kok 2002).  In the 

U.S., musk thistle is quarantined, regulated or listed as a noxious weed in 23 states 

(USDA 2008).  In Tennessee, musk thistle is listed as a “Rank 2 – Significant Threat” by 

the Tennessee Exotic Pest Plant Council (TNEPPC 2008), and its seed is listed as a 

“Restricted Noxious Weed” (TDA Seed Regulations 1999).       

 Although chemical application provides some measure of weed control, 

populations of this invasive exotic weed persists despite repeated applications of 

herbicides.  After treatment with herbicides, many standing plants of the target weeds and 

other plants in the proximity of the chemical application are killed.  Because musk thistle 

thrives in open, disturbed habitats and has a large seed reservoir in the soil, it is often the 

first plant to re-grow following herbicide sprays (Kok 2001). Mowing and other 

mechanical controls or physical disturbances to the soil also can contribute to spreading 

seedheads and seeds, and disturbance to the ground can further facilitate the spread of the 

plant.  Additionally, chemical and mechanical methods require multiple treatments each 

season, and these actions are usually restricted to readily accessible areas (Trumble and 

Kok 1982).  Because it was introduced into the U.S., the complement of natural enemies 

that impacted and maintained lower populations of musk thistle in its native European 
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habitats were not present, allowing this invasive plant to persist and reproduce without 

the subduing impact of important biotic factors.  Thus, the introduction of exotic natural 

enemies was promoted and projected to provide a long-term, sustainable approach to 

reducing populations.  

 Investigations for suitable biological control insects were initiated in Europe and 

Asia in the early 1960s (Frick 1978b), and two weevil species [Rhinocyllus conicus 

Fröelich (the head weevil) and Trichosirocalus horridus (Panzer) (the rosette weevil) 

(Coleoptera: Curculionidae)] emerged as two promising biological control agents (Fig 1A 

and 1B).  These weevils share similar home ranges with C. nutans and feed primarily on 

thistles in the genera Carduus, Cirsium, Silybum, and Onopordum (Zwölfer and Harris 

1984).  The biologies of these two weevil species complement one another in regards to 

the reduction of the reproductive capability of musk thistle.  While the adults of both 

species feed casually on the foliage, larvae of R. conicus feed within the developing 

flowerheads on the receptacle and developing achenes, greatly decreasing the plant’s 

reproductive capability (Shorthouse and LaLonde 1984, Kok 2001).  The larvae of T. 

horridus feed on the meristems of the developing rosettes, causing necrosis of the 

meristem leading to plant deformities or even death (Fig. 1D) (Ward et al. 1974, Grant et 

al. 1990).   

In the southeastern U.S., overwintered adults of R. conicus emerge in late-April 

and begin mating and ovipositing on the involucral bracts of the thistle heads.  Eggs hatch 

in 6 to 7 days, the larvae mine into the developing head to feed for ca. 25 days, and 

pupate for 8 to 14 days.  By mid-June most adults have emerged; they then aestivate and 

overwinter (Surles et al. 1974).  Adults of T. horridus emerge in mid-May through mid- 
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Figure 1. Weevils introduced as biological control agents of Carduus nutans: A) 
Rhinocyllus conicus adult (ca. 5 mm), B) Trichosirocalus horridus adult (ca. 4 mm), 
C) eggs of R. conicus on bud of C. nutans (encircled), D) rosette of C. nutans (in 
which larvae of T. horridus feed). 

A B

C D
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June from pupae that have developed beneath the soil surface.  These adults aestivate 

from early July through the fall and begin ovipositing on the midribs of rosette leaves in 

late December through early March.  Larvae bore into plant tissues and move to the 

meristem of the rosette, where they feed for ca. 2 months and drop to the ground to 

pupate (Trumble and Kok 1979).  

Releases of R. conicus were first made in Canada in 1968 (Frick 1978b), and were 

followed in 1969 by releases in California (Goeden 1978), Montana (Hodgson and Rees 

1976), and Virginia (Surles et al. 1974).  Releases of T. horridus were first made in 

Virginia in 1974 (Ward et al. 1974, Trumble and Kok 1979), followed by releases in 

Canada in 1976 (Dunn 1978).  Upon establishment of these weevils and subsequent 

control of musk thistle (ca. 95% mean reduction of plants in study plots in Virginia 

attributed to R. conicus; Kok and Surles 1975), both R. conicus and T. horridus were 

widely redistributed as part of musk thistle control programs throughout the continental 

U.S. (Trumble and Kok 1982, Townsend et al. 1991, Lambdin and Grant 1992, Buntin et 

al. 1993, McDonald et al. 1994, Gassmann and Kok 2002).   

Musk thistle biological control programs were considered a success in many areas 

where they were initiated.  These weevils have reduced musk thistle populations in 

several areas across North America, including Montana (Rees 1977, 1978) and 

Saskatchewan (Harris 1984).  In study plots where weevils were released in Tennessee, 

musk thistle densities were reduced by ca. 94% over a six-year period (Lambdin and 

Grant 1996).  Musk thistle is considered to be adequately controlled in numerous areas of 

weevil release, with some plant populations showing long-term reductions (from 13 

plants per m2 to <1 plant per m2) over two decades after release (Kok 2001). 
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 While releases of these two weevil species were made throughout Tennessee from 

1989 through the early 1990s, limited follow-up studies have been conducted to fully 

assess establishment, spread, or impact of these biological control agents (Lambdin and 

Grant 1989, Lambdin and Grant 1992, Grant and Lambdin 1993).  Research has focused 

primarily on assessing insect species composition on musk thistle (Powell et al. 1996), 

investigating impact of native insect species on musk thistle (Powell et al. 1992, Landau 

et al. 1996, Grant et al. 1998), and assessing distribution of selected exotic species, such 

as Canada thistle, Cirsium arvense (L.) Scopoli (Sudbrink et al. 2001).   

Non-target Feeding of Weevils on Native Thistles in North America 

 Recent documentation of non-target impacts of R. conicus on native thistles in the 

north central and western U.S., however, illustrate the importance of assessing the impact 

of these weevils on target and non-target thistles in areas in which they were released 

(Table 1).  The first record of R. conicus feeding on native North American thistles in the 

genus Cirsium was in Montana and Canada on Cirsium undulatum (Nuttall) Sprengel and 

Cirsium flodmannii (Rydberg) Arthur (Rees 1977, 1978, Zwölfer and Harris 1984).  

Insect surveys of native thistles in California documented R. conicus feeding on natural 

populations of 13 native Cirsium species, one of which (Cirsium fontinale (Greene) 

Jepson var obispoense J. T. Howell) is listed as Federally endangered (Turner and Herr 

1996), and three of which [Cirsium campylon Sharsmith, Cirsium ciliolatum (Henderson) 

J. T. Howell, and Cirsium hydrophilum (Greene) Jepson var vaseyi (Gray) J. T. Howell] 

are potential candidates to be listed as Federally threatened or endangered (Goeden and 

Ricker 1986, 1987, Turner et al. 1987). While the extension of the host range of  
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Table 1. Native North American Cirsium species utilized by Rhinocyllus conicus as 
an alternate host plant (modified from Pemberton 2000). 

     Cirsium species Location1        Source2 

C. andersonii (Gray) Petrak CA Turner et al. 1987 

C. brevistylum Cronquist CA Turner et al. 1987 
C. californicum Gray CA Goeden and Ricker 1986 
C. callilepis (Greene) Jepson CA Turner et al. 1987 
C. campylon Sharsmith CA Turner et al. 1987 
C. canescens Nuttall NE 

WY 
Louda et al. 1997 
Pemberton 2000 

C. centaureae (Rydberg) K.  
    Schumann 

CO Louda et al. 1997 

C. ciliolatum (Henderson) J.T.  
    Howell 

CA Turner et al. 1987 

C. cymosum (Greene) J.T.  
    Howell 

CA Turner et al. 1987 

C. douglasii de Candolle CA Turner et al. 1987 
C. edule Nuttall CO Pemberton 2000 
C. flodmanii (Rydberg) Arthur SK  

WY  
Zwölfer and Harris 1984 
Pemberton 2000 

C. fontinale var obispoense J.T.  
    Howell 

CA Turner and Herr 1996 

C. hillii (Canby) Fernald WI Sauer and Bradley 2008 
C. hydrophilum var vaseyi  
    (Gray) J.T. Howell 

CA Turner et al. 1987 

C. occidentale (Nuttall) Jepson CA Goeden and Ricker 1987 
C. owenbyi Welsh CO Pemberton 2000 
C. pastoris J.T. Howell CA Turner et al. 1987 
C. proteanum J.T. Howell CA Goeden and Ricker 1986, Turner et al. 

1987 
C. pulchellum (Greene) Wooton  
    & Standley 

CO Louda et al. 1997 

C. quercetorum (Gray) Jepson CA Pemberton 2000 
C. scariosum Nuttall WY Pemberton 2000 
C. tioganum (Congiaux) Petrak CA Turner et al. 1987 
C. tweedyi (Rydberg) Petrak CO Louda et al. 1997 
C. undulatum (Nuttall) Sprengel CO, NE, SD  

MT 
WY 

Louda et al. 1997 
Rees 1977 
Pemberton 2000 

1 – Locations in U.S.: CA-California; CO-Colorado; NE-Nebraska; MT-Montana; SD-South 
Dakota; WI-Wisconsin; WY-Wyoming. Locations in Canada: SK-Saskatchewan. 
2 – Sources listed in “Literature Cited”. 
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R. conicus seems considerable, the importance and impact of these new host associations 

is not yet known. 

Although it is not one of the first observations of its type, the feeding of R. 

conicus on Platte thistle, Cirsium canescens Nuttall, is the most well documented case of 

non-target feeding by this weevil on native thistles.  Larvae of R. conicus were first 

documented feeding in the seedheads of C. canescens in Nebraska in 1993 (Louda et al. 

1997, Louda 1998).  This thistle shares the same budding and flowering period with musk 

thistle in Nebraska and, therefore, is well synchronized with the period of oviposition of 

R. conicus.  Within five years populations of R. conicus grew to infest over 25% of 

observed C. canescens plants, and the average number of R. conicus developing per plant 

increased to 40 (Louda 1998, Louda 2000a).  Additionally, feeding of R. conicus in 

seedheads reduced the number of viable seeds in infested heads by 86%, which is 

predicted to decrease population numbers and densities of C. canescens (Louda 2000a).  

While these initial non-target observations occurred in isolation from any known musk 

thistle infestations, later surveys showed a positive relationship between proximity to and 

density of musk thistle populations and intensity of non-target feeding on native thistles 

(Rand et al. 2004).  Feeding of R. conicus on C. canescens is of particular interest, 

because this thistle is a close relative of Pitcher’s thistle, Cirsium pitcheri (Torrey) Torrey 

and Gray, a Federally listed threatened species (Pavlovic et al. 1992, Louda 1998, Louda 

2000b).  Concern exists that R. conicus will continue its host range expansion and utilize 

Pitcher’s thistle, increasing its likelihood of extinction (Louda 1998, Louda 2000b). 

The impact of the released weevils on non-target thistle species in the southern 

Appalachians is poorly known.  While there have been no published reports on non-target 



 

 21

activity of R. conicus on native thistles in this region, some research has been conducted 

on host specificity of T. horridus. The species included in non-target testing were 

primarily economically important crops (Ward et al. 1974, Kok 1975), but T. horridus 

was documented in field surveys to feed on 6% of Cirsium discolor (Muhlenberg ex 

Willdenow) Sprengel, field thistle, observed between 1981-85 in Virginia (McAvoy et al. 

1987). Although not documented in the southern Appalachians, T. horridus was observed 

to infest rosettes of tall thistle, C. altissimum (L.) Sprengel, a species that also occurs in 

Tennessee, at similar levels to the introduced bull thistle, C. vulgare (Savi) Ten., in 

Nebraska (Takahashi et al. 2009). 

 Infestation of native thistles by R. conicus is not totally unexpected. Host 

specificity tests conducted as part of the release protocol for North America demonstrated 

the range of species R. conicus was able to utilize as a host for reproduction (Zwölfer and 

Harris 1984). Early host specificity tests and host data from its native range suggested 

that this insect species could feed and develop on several genera and species of thistles in 

the tribe Cardueae (Asteraceae).  In European laboratory studies, the host suitability of 45 

species of thistles in 29 genera in four subtribes of Cardueae and in eight other tribes of 

Asteraceae to R. conicus was evaluated.  R. conicus consistently fed on four species of 

Carduus and on five species of Cirsium and adults oviposited and larvae developed 

successfully on two species of Carduus and two species of Cirsium.  In European field 

studies designed to evaluate the host specificity of thistles to R. conicus, 70 species in 18 

genera in four subtribes of tribe Cardueae were sampled.  Eggs and larvae were found in 

flowerheads of five of the nine species of the target genus Carduus, in four of 17 species 

of Cirsium, in Silybum marianum (L.) Gaertner, and in Onopordum acanthium L. (all 
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members of subtribe Carduinae).  Although the host range of R. conicus was not 

restricted to a species or genus, the projected benefits of its release as a biological control 

agent outweighed the potential limitations and it was approved for release into the U.S. 

(Boldt 1997).  

Native Thistles in Tennessee 

 Currently, 15 species in the Asteraceae tribe Cardueae have been documented in 

Tennessee (Table 2).  Of these, five are native species [Cirsium altissimum, soft thistle, 

C. carolinianum (Walter) Fernald & Schubert, C. discolor, yellow thistle, C. horridulum 

Michaux, and swamp thistle, C. muticum Michaux] (TENN 2008).  In Tennessee, C. 

carolinianum and C. horridulum bloom in the spring, with C. carolinianum blooming 

from May through July (Wofford 1989).  A native species in the Coastal Piedmont 

regions of eastern U.S. where it blooms from May through August (Gleason and 

Cronquist 1991), C. horridulum has recently expanded its range into the river valleys of 

Tennessee (Cronquist 1980).  The remaining native thistles (C. altissimum, C. discolor, 

and C. muticum) bloom later in the year, all species bloom approximately from August 

through October (Wofford 1989). These native species are widely distributed throughout 

the eastern U.S., each occurring in at least 15 states in addition to Tennessee (USDA 

2008). The other ten species in the tribe Cardueae are exotics of southern 

European/western Asian origin.  Although not commonly known as a “thistle,” lesser 

burdock, Arctium minus Bernhardi, is within the same tribe (Cardueae) and subtribe 

(Carduinae) as Carduus and Cirsium (Zwölfer and Harris 1984, Judd et al. 2002, Story 

2002). Likewise, most species of Centaurea are not commonly called “thistles” but are in 

Cardueae (subtribe Centaureinae, as is Cnicus benedictus L.) (Story 2002). 
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Table 2. “Thistles”1 and related species (Asteraceae: Cardueae) documented in 
Tennessee (courtesy of the University of Tennessee Herbarium) and their known 
associations with Rhinocyllus conicus and Trichosirocalus horridus. 

1 – Other species referred to as “thistles”, such as species in the genus Sonchus 
(Asteraceae) and Salsola tragus (Chenopodaceae) are found in Tennessee. Only species 
in the genera Carduus and Cirsium recorded from Tennessee were included in this study. 
  
2 – Number of counties in which each species has been documented. 
 
3 – Yes = weevil has been found on this plant species; No = weevil has not been found on 
this species; Unk. = no data available for this plant species in Tennessee. 
 
* – Introduced species. 

Known host of 3:            Species Counties2 
R. conicus T. horridus 

Subtribe Carduinae    
 Arctium minus Bernhardi* 24 Unk. Unk. 
 Carduus nutans L.* 33 Yes Yes 
 Cirsium altissimum (L.) Sprengel 24 Unk. Unk. 
  C. arvense (L.) Scopoli* 6 Yes Yes 
  C. carolinianum (Walter) Fernald &  
      Schubert 16 Unk. Unk. 
  C. discolor (Muhlenberg ex Willdenow)  
      Sprengel 33 Unk. Yes 
  C. horridulum Michaux 7 Unk. Unk. 
  C. muticum Michaux 12 Unk. Unk. 
  C. vulgare (Savi) Tenore* 27 Yes Yes 
 Silybum marianum (L.) Gaertner* 1 Yes Unk. 
Subtribe Centaureinae    
 Centaurea cyanus L.*  27 No Unk. 
  C. diffusa Lamark* 1 Unk. Unk. 
  C. solstitialis L.* 1 Unk. Unk. 
  C. stoebe L.*  30 No No 
 Cnicus benedictus L. * 5 Unk. Unk. 
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 Conversely, other species in Tennessee are known by their common name as 

“thistles” but are in different tribes of Asteraceae or different plant families.  The genus 

Sonchus (species of which are commonly known as “sow thistles”) is in the Asteraceae 

tribe Lactuceae (Judd et al. 2002, Kim et al. 2004).  Prickly Russian thistle, Salsola 

tragus L., is in the family Chenopodiaceae. Because these groups are not closely related 

to true thistles they are not of interest to this study.  Only those species in the genera 

Carduus or Cirsium that are documented in Tennessee were included in this research 

(Table 2).  

Predicting Habitats Using Spatial Analysis 

 Because the distribution of populations of introduced thistles and weevils may 

influence the frequency of non-target impacts on native thistles (Rand et al. 2004), the 

use of spatial analysis via a geographic information systems (GIS) could be useful in 

analyzing the significance of these spatial relationships. A GIS is a computer system that 

accumulates, manipulates, analyzes, and displays geospatial data. Components of GIS 

include satellites, GPS receivers, georeferenced datasets, geospatial software applications 

and trained users and professionals (Chang 2008). The use of GIS facilitates the analysis 

and visualization of complex spatial and temporal relationships among multiple spatial 

components (Hartkamp et al. 1999).  Although GIS has existed in limited forms since the 

late 1960s, recent advances in computer technology and spatial analytical software for 

personal computers have expanded its appeal to a broad range of researchers.  In 

conjunction with advancements in software and computer technology, a variety of data 

(elevation, land cover, hydrology, climatic, infrastructure, etc.) is increasingly available 

for use from government agencies (U.S. Geological Survey, USDA Natural Resources 
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Conservation Service, USDA Forest Service, U.S. Department of Commerce National 

Oceanic and Atmospheric Administration, etc.) and organizations (Southern Appalachian 

Man and the Biosphere, The Nature Conservancy, etc).  The combination of relevant 

spatial data and data collected in the field can enhance research by detecting associations 

that may not be obvious using conventional statistical models. 

 In disciplines that possess inherently spatial characteristics, such as natural 

resource management and agriculture, spatial analysis has become a useful tool in 

research. For example, Jensen et al. (2001) utilized spatial analysis to develop a potential 

vegetation map for the Little Missouri National Grasslands of North Dakota.  The habitat-

type raster map produced provided a base map for land use planning because it can be 

used to describe the land’s potential for resource use, indicate plant community 

succession pathways, and reference conditions associated within minimally altered 

ecosystem states.  In the context of interactions among native and introduced thistles and 

introduced biological control agents in Tennessee, development of spatial models could 

provide estimates of habitat characteristics to enable predictions of suitable habitats for 

each exotic and native thistle species.  Populations of native thistles that are adjacent or 

close to exotic thistles may be more likely to encounter non-target feeding by the 

introduced biological control agents.  An effective method to generate these habitat 

models is Mahalanobis distance.  

 Mahalanobis distance (D2) is a multivariate statistic that estimates levels of 

dissimilarity using the mean and variance of the predictor variables and the covariance of 

all variables (Mahalanobis 1936, Rao 1952, 1973).  This statistic defines a set of 

conditions as ‘ideal’ based on a sample of the data (i.e., observed data) and calculates 
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dissimilarity from the ideal conditions for the remainder of the data (Rao 1952, Clark et 

al. 1993). So, conditions that are most similar to those of the observed locations will have 

relatively low D2 values, and D2 values increase with dissimilarity (Clark et al. 1993, 

Jenness 2003).  Originally developed for use in anthropometric applications, the D2 

statistic has been used with success to predict suitable habitats for wildlife (Clark et al. 

1993, Browning et al. 2005, Rotenberry et al. 2006, Thatcher et al. 2006, Watrous et al. 

2006) and plants (Boetsch et al. 2003, van Manen et al. 2005, Thompson et al. 2006) in 

the U.S.   

 Mahalanobis distance uses presence only data unlike other habitat analyses, such 

as logistic regression, that require presence and absence locations, thus avoiding the 

pitfalls of how to classify habitats where the species of interest is absent (Clark et al. 

1993, van Manen et al. 2005, Watrous et al. 2006). Despite the widespread distribution of 

both Carduus nutans and Cirsium discolor, other native Cirsium species in Tennessee are 

not as ubiquitous or obvious to detect, and determining the significance of their absence 

in a habitat would be problematic (i.e., is a species absent from a site because it is 

unsuitable or are other factors responsible?).  Thus, Mahalanobis distance analysis 

provides a means to predict habitats for thistles that occur less frequently by using only 

their known localities. 

  The use of spatial analysis to develop habitat models, combined with research on 

non-target activity of the introduced biological control agents of musk thistle on native 

thistles found in Tennessee, provide opportunities to gain unique insights about these 

species.  Most of the native thistles in Tennessee have not been included in previous non-

target studies of R. conicus or T. horridus, and host utilization of these thistles by either 
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introduced weevil is poorly known.  So, the opportunity exits to document and evaluate 

the first occurrences of novel associations among these weevils and native thistles.  The 

use of spatial analysis to develop habitat models for selected thistle species could be 

important, because it would facilitate more targeted management practices in areas where 

conservation of native plants is a priority.  However, the development of these models 

may not only be useful to land managers in Tennessee, but also may assist land managers 

in other states with the prediction of suitable habitats for thistles of interest.  While none 

of the native thistle species discussed above is listed as rare, threatened, or endangered 

(RTE) in Tennessee or Federally, three thistles found in Tennessee are listed RTE in 

other states (C. carolinianum - state listed as rare in Indiana and threatened in Ohio; C. 

horridulum - state listed as endangered in Connecticut, New Hampshire, and 

Pennsylvania; C. muticum - state listed as threatened in Arkansas) (USDA 2009).  The 

techniques used to develop spatial models that characterize habitats for any of these 

thistles in Tennessee could be modified for other states where they are listed as protected 

species and help identify areas vulnerable to herbivory by either of the introduced 

weevils. As a result, this research in Tennessee could provide new insights to weevil-

thistle interactions, as well as aid land managers and scientists in other states in managing 

and protecting native species. 

Objectives of Research 

 The overall goal of this research is to document the host utilization of target and 

non-target thistle species of two European herbivorous insects introduced to manage 

musk thistle and predict where non-target host utilization may occur based on habitat 
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predictions of selected thistle species using spatial analysis in a region where several 

native and exotic thistle species exist and both exotic insect species are widely 

established.  Specific questions that need to be addressed towards reaching this goal 

include: 1) are these released weevils synchronized with native thistle phenologies in this 

region, 2) do these exotic weevils feed on these thistle species and do they negatively 

impact the plant, and 3) can a useful spatial model be developed to predict thistle habitats 

and areas where herbivory by either of these two weevils is likely?  By addressing these 

questions, information on the biologies of both the plant and weevil species may be better 

understood. 

Therefore, the objectives of this study are to: 1) assess the synchrony of 

phenologies of the three exotic and five native thistles in Tennessee with the phenologies 

of R. conicus and T. horridus, 2) document the incidence of the introduced weevils in 

natural populations of these eight thistle species, 3) quantify the impacts on plant 

reproduction or growth responses of each thistle species due to feeding of R. conicus and 

T. horridus, and 4) predict the occurrence of two native (C. carolinianum and C. 

discolor) and two exotic (C. vulgare and Carduus nutans) thistle species (model species) 

and identify potential habitats across a study area for these thistle species using spatial 

analysis.  Interactions among introduced and native species can range from subtle to 

complex.  Completion of these objectives will provide information useful in the 

management of native and introduced species, and greater knowledge of the relationships 

among the invasive musk thistle, the weevils introduced for its control, and native thistle 

species.   
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CHAPTER II. PHENOLOGIES OF NATIVE AND INTRODUCED 
THISTLE SPECIES AND THEIR SYNCHRONY WITH 
INTRODUCED BIOLOGICAL CONTROL AGENTS OF 

CARDUUS NUTANS 

Introduction 

Biological control of pest plants by insects has been studied and implemented 

throughout the world (Goeden and Andres 1999, Gurr et al. 2000, Hajek 2004).  One 

important attribute of an effective biological control agent is its biological synchrony 

with the plant pest.  The occurrence of the appropriate life stages of the plant during the 

time at which the biological control agent requires host material is important in the 

establishment and growth of insect populations against their weed hosts (Bellows and 

Headrick 1999).  The importance of this synchrony can be overlooked when a natural 

enemy is evaluated for release in new areas, as it is one of a suite of characteristics that 

contributes to an herbivore’s ability to impact a plant.  Additionally, other factors, such as 

host specificity, plant impacts, likelihood of establishment and dispersal, etc., are the 

primary foci of natural enemy evaluations (Bellows and Headrick 1999, Hajek 2004).  

However, phenological synchrony between an introduced herbivore and native plants 

may facilitate host range expansion of the herbivore, especially if the herbivore has a 

wide host range in its region of origin. One such instance of the increasing importance of 

phenological synchrony in introduced insect-native plant interactions can be found in the 

biological control program against musk thistle, Carduus nutans L. 

Eurasian thistles in the genus Carduus are introduced weed species that can 

become problematic in pastures, grasslands, and rangelands in North America (Frick 

1978a, Van Driesche et al. 2002).  Musk thistle is the most widely distributed of these 
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introduced species, occurring throughout much of the U.S. and Canada (USDA 2008).  A 

biological control program against Carduus thistles, with C. nutans as the primary focus, 

was initiated in 1968 and included the releases of two Eurasian weevil species, 

Rhinocyllus conicus Fröelich and Trichosirocalus horridus (Panzer) (Coleoptera: 

Curculionidae) (Frick 1978a, Zwölfer and Harris 1984, Kok 2001).  Of these two 

weevils, R. conicus has been more widely promoted as a biological control agent, as 

larval feeding in the receptacle directly impacts the number of seeds produced by C. 

nutans (Surles and Kok 1977, Rowe and Kok 1984, Zwölfer and Harris 1984). 

The ability of R. conicus to reduce seed numbers of thistles is directly related to 

its phenological synchrony with the host plants.  Greater population establishment and 

infestation of seedheads by R. conicus were observed on C. nutans than C. acanthoides 

L., which was attributed to C. acanthoides blooming later in the season when R. conicus 

had completed oviposition (Surles et al. 1974, Surles and Kok 1977).  Only after R. 

conicus exhibited a delay in oviposition in some populations of C. acanthoides did the 

weevil have an effect on seed production (Rowe and Kok 1984).  Similarly, the effect of 

R. conicus on seed numbers of some populations of C. pychnocephalus L. in California 

was limited, due to flower and seed production continuing for one month after larvae had 

ceased feeding, allowing plant populations to remain stable (Goeden and Ricker 1985).  

Although the ability of R. conicus to feed on a range of introduced thistle species 

was initially seen as a positive attribute, this weevil was able to survive and reproduce 

using other thistle species in the genus Cirsium that are native to North America as host 

plants.  Rees (1977) first observed low levels of R. conicus feeding on C. undulatum 

(Nuttall) Sprengel in Montana, and R. conicus has now been documented on at least 25 of 
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the ca. 96 species of Cirsium in North America (Zwölfer and Harris 1984, Goeden and 

Ricker 1986, Turner et al. 1987, Turner and Herr 1996, Louda et al. 1997, Pemberton 

2000, Sauer and Bradley 2008, USDA 2008). The native C. canescens Nuttall buds and 

flowers synchronously with the oviposition period of R. conicus.  This thistle was 

infested at higher levels than the less synchronous C. undulatum, and levels of weevil 

infestation were influenced more by variations in weevil phenology (due to abiotic 

factors) than variation in the plant’s phenology (Louda 1998, 2000a, Russell and Louda 

2004). So, the host range expansion of R. conicus can be better understood and predicted 

if the phenologies of native thistles are synchronous with the development of the weevils. 

 Phenologies of both R. conicus and T. horridus are known from previous release 

and establishment studies in the southeastern U.S. and Tennessee.  The plant-damaging 

larvae of R. conicus are active beginning in early May through mid June (Surles et al. 

1974, Surles and Kok 1976, Lambdin and Grant 1989).  The biology of R. conicus is well 

synchronized with the observed development of buds and flowers of C. nutans in 

Tennessee (Powell et al. 1996).  Larvae are also the damaging stage of T. horridus and 

are found in the rosettes beginning in late December through early May (Trumble and 

Kok 1979, Sieburth et al. 1983).  Because most thistles overwinter as rosettes in regions 

with winter climates, T. horridus has the potential to impact a wider range of species.  

However, little non-target activity by T. horridus (when compared to R. conicus) has 

been documented (Ward et al. 1974, Kok 1975, McAvoy et al. 1987, Takahashi et al. 

2009). 

 To better assess the potential non-target hosts of these weevils in Tennessee, a 

study was initiated to compare the phenologies of thistles that occur in the state with the 
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phenologies of the introduced weevils.  The objectives of this study were to 1) estimate 

the phenologies of thistle species that occur in Tennessee using literature sources and 

herbarium records, 2) compare thistle phenologies in the herbarium and literature with 

field observations, 3) confirm the phenologies of R. conicus and T. horridus through field 

observations, and 4) compare phenologies of thistles with weevil phenologies. 

Materials and Methods 

Specimen records of C. nutans and all species known to be host plants of R. 

conicus and T. horridus [in the genera Carduus, Cirsium, Silybum, Onopordum; tribe 

Cardueae (Asteraceae)] (Zwölfer and Harris 1984) and recorded from Tennessee were 

examined at the University of Tennessee Herbarium.  For each specimen record, the 

collection date and numbers of buds, flowers, and seedheads were recorded.  The  

average numbers each of buds, flowerheads, and seedheads per plant were calculated for 

each month the stages were present to compare with field observations. Herbarium 

records were periodically reviewed through 2008 for any updated thistle specimen 

records.  

 In 2008, monitoring of populations of Carduus nutans and thistles in the genus 

Cirsium for comparison with herbarium data began in late April and continued through 

early September, and sampling duration varied for each thistle species depending on its 

biology (Table 3). General areas in which to search for populations of each thistle species 

were based on locality records from plant specimens in the University of Tennessee 

Herbarium. Site reconnaissance for these populations was conducted between 2005 

through 2007 as part of other studies. For each of the 25 populations, 20 plants were  
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Table 3. Thistle species and populations monitored for phenology in Tennessee, 
2008. 

        Species Populations 
Sampled 

Total 
Observations 

Observation Period 

Carduus nutans* 6 240        6 May to 12 June 
Cirsium altissimum 3 120      22 June to 7 September 
Cirsium arvense* 2 120        6 May to 2 June 
C. carolinianum 3 240        2 May to 18 June 
C. discolor 4 120        7 May to 7 September 
C. horridulum 3 120     29 April to 7 June 
C. muticum 1 140        8 May to 6 September 
C. vulgare* 3 120        8 May to 6 September 
 
 * – Introduced species. 
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observed, and collection date and number of buds, flowers and seedheads were recorded.  

Each population was monitored from one to four times depending on when the 

population was located or available during the sampling season. Population monitoring 

ceased soon after initiation of seedheads.  Included in this study were observations from 

10-20 plants of each thistle species that were in use for other studies during the 2008 field 

season (control plants exposed to normal environmental conditions).     

General phenologies for each thistle species were compiled from the literature 

(Cronquist 1980, Wofford 1989, Carman 2001, Weakley 2008).  These sources were 

selected because they specifically addressed plants from Tennessee (Carman 2001) or 

specifically included Tennessee within the topic region (Cronquist 1980, Wofford 1989, 

Weakley 2008). Additional sources were considered but not utilized because they did not 

specifically consider plant seasonality in Tennessee (i.e., Radford et al. 1968, Gleason 

and Cronquist 1991).  The selected literature sources list general flowering periods rather 

than specific timeframes of each developmental stage, and these flowering periods were 

charted from each literature source.  Based on field observations in 2008, as well as data 

collected during the other studies conducted between 2005 through 2007, the period of 

each developmental stage was determined and charted for comparison with literature 

sources.  The initiation of each developmental stage, from bud through seed release, was 

designated by the initial of each stage (B-bud, F-flower, S-seed) for charted phenologies 

based on field observations. 

Weevil phenologies were determined by counting numbers of eggs and adults of 

R. conicus and adult T. horridus present on buds and flowers of the plants examined 

during the thistle phenology survey. These developmental stages were monitored in the 
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field, because the eggs of R. conicus and both adult weevils are more easily detected and 

counted on the plant, whereas the larvae and pupae of these weevils require plant 

dissection to evaluate. Although these weevils are known to be associated with Carduus 

nutans, all thistle species were examined for the presence of these weevils.  Numbers of 

adults of both weevils observed on C. nutans were averaged per plant for each weekly 

sampling, from the week of 4 May through the week of 8 June 2008 to estimate levels of 

activity.  The average numbers of eggs of R. conicus per head (buds and flowers 

combined) also were calculated for each weekly sampling period listed previously.  The 

total number of eggs of R. conicus and both adult weevils observed on other thistle 

species during this study were tallied per thistle species for the period between 29 April 

(when R. conicus generally become active) and 18 June 2008 (when R. conicus activity 

has lessened). 

To confirm periods of adult activity of T. horridus during the winter with the 

literature (Ward et al. 1974, Trumble and Kok 1979), additional observations were made 

in 2009.  A leaf blower (Husqvarna model 225B E-tech) modified after Harper and 

Guynn (1998) was used to collect weekly vacuum samples from populations of C. nutans 

in Knox, Cumberland, and Bradley Counties from 4 January through 29 March 2009.  At 

each site, five random vacuum samples were taken in a 2 m x 2 m area containing at least 

four rosettes of C. nutans.  In each sample, the rosettes and soil immediately surrounding 

them were vacuumed, and each of the five samples were stored in an individual cloth 

mesh bag, taken to the laboratory and examined for presence of adult weevils. 

To test for statistical significance between plant records from herbarium and field 

observations, as well as plant and weevil data collected during 2008, analysis of variance 
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was performed and significance (P < 0.05) among means was determined using least 

significant differences.  The average numbers of buds, flowers, and seedheads per month 

of each of the eight thistle species found in Tennessee were compared to determine 

significant differences between means of herbarium and field-observed plants, and data 

were normalized using rank transformation. Additionally, the average number of eggs of 

R. conicus on heads of C. nutans, as well as the average number of buds and flowers 

present on plants of C. nutans, soft thistle, Cirsium carolinianum (Walter) Fernald & 

Schubert, and yellow thistle, C. horridulum Michaux, were compared each week over a 

five-week period during weevil oviposition to test for significance among weekly means. 

These data were normalized using log transformation, and all analyses were performed in 

SAS 9.2 (SAS Institute, Cary, North Carolina).  

Results and Discussion 

Comparison of Herbarium and Field Phenologies 

 Potential host plants of R. conicus and T. horridus from Tennessee were 

documented.  A single record of Silybum marianum (L.) Gaertner is known from Loudon 

County, Tennessee, and there are no records of any species in the genus Onopordum from 

Tennessee (Chester et al. 1997, TENN 2008). The only Carduus species that occurs in 

Tennessee is C. nutans (Chester et al. 1997, TENN 2008). Five native [tall thistle, 

Cirsium altissimum (L.) Sprengel, C. carolinianum, field thistle, C. discolor, C. 

horridulum, and swamp thistle, C. muticum Michaux] and two introduced [bull thistle, C. 

vulgare (Savi) Tenore and Canada thistle, C. arvense (L.) Scopoli] Cirsium species are 

known to occur in natural populations in Tennessee (Chester et al. 1997, TENN 2008) 



 

 37

(Table 2).  These records of Carduus nutans and the seven Cirsium species show that 

these species occur readily in Tennessee. 

 When only the source (i.e., herbarium or field observations) of the plant data was 

considered, significantly more buds per plant consistently were documented from field-

observed plants of Carduus nutans (F = 37.02; df = 1, 292; P = <0.0001) and Cirsium 

discolor (F = 40.96; df = 1, 173; P = <0.0001) than herbarium specimens. Conversely, 

significantly more buds (F = 8.12; df = 1, 157; P = <0.0050) and flowers (F = 18.15; df = 

1, 158; P = <0.0001) per plant consistently were documented from herbarium specimens 

of C. arvense than field observations.   

When interactions between the source and collection month were considered, 

several thistle species exhibited significant interactions.  Significantly more flowers per 

plant of Carduus nutans were observed from herbarium specimens than field-observed 

plants in May, while significantly more seedheads per plant were documented from field 

observations than herbarium specimens in June.  For plants of Cirsium carolinianum, 

significance in flowers per plant alternated, with significantly more flowers per plant 

from herbarium specimens than field observations in May and significantly more field-

observed flowers per plant than herbarium specimens in June (Fig. 2, Table 4).  No 

significant interactions between source and collection month were observed for any stage 

of C. arvense. Significantly more flowers per plant of C. vulgare were observed from 

herbarium specimens than field observations in June, and greater numbers of buds 

(August and September), flowers (July), and seedheads (July and September) per plant 

were recorded from field-observed plants than herbarium specimens (Fig. 3, Table 5). 

Significantly greater numbers of buds per plant were documented from field observations 
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Figure 2. Average number of buds, flowers and seedheads per plant per month of 
spring-blooming thistles based on specimens from the University of Tennessee 
Herbarium (dashed lines; HB-buds, HF-flowers, HS-seeds) and field observations 
(solid lines; FB-buds, FF-flowers, FS-seeds) (‘*’ – denotes introduced species), 2008. 
Significance between monthly averages of plant parts from herbarium and field 
observations is reported in Table 4.
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Table 4. Monthly means of buds, flowers, and seedheads recorded from plants of Carduus nutans, Cirsium carolinianum and  
C. horridulum either housed in the University of Tennessee Herbarium (‘TENN’) or observed in field surveys (‘Field’). 
Significant (P < 0.05) interactions between the source of plant data and the collection month were determined using analysis 
of variance. 

 
 
 
 
 
 
 
 
 
 

 
1 – Analysis of variance F-values, degrees of freedom, and levels of significance. 
 
2 – No data were collected for these plant parts during these months. 
  
3 – Means for plant parts from different plant data sources with different letters within the same month exhibited significant 
interactions between the source of plant data and the collection month, and only significant interactions are labeled with letters. 
 
* – Introduced species. 
 

Species Stage April May June July ANOVA1 
  Field TENN Field TENN Field TENN Field TENN    F df P 
Carduus nutans* Bud   .2 .  2.60  0.87  1.40  0.42 .  0.17 1.95 1, 292 0.1634 
 Flower . .  0.45b3  1.33a  1.18  1.11 .  0.67 13.48 1, 292 0.0003 
 Seedhead . .    0    0  0.73a  0.16b .  0.83 14.98 1, 292 0.0001 
Cirsium carolinianum Bud . .  5.63  4.88  2.95  1.82 .    0 0.06 1, 270 0.8047 
 Flower . .  0.16b  1.50a  2.75a  2.41b .  5.5 16.50 1, 270 0.0001 
 Seedhead . .    0  0.13  2.23  1.06 .  1.06 2.15 1, 270 0.1438 
Cirsium horridulum Bud    1.93 .  1.20  1.00  0.10    0 .    . 0.01 1, 109 0.9369 
 Flower    0.07 .  0.63  1.00  0.60    0 .    . 2.98 1, 109 0.0869 
 Seedhead      0 .  0.13  0.50  4.45  2.50 .    . 0.77 1, 109 0.3820 
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Figure 3. Average number of buds, flowers and seedheads per plant per month of 
summer-blooming thistles based on specimens from the University of Tennessee 
Herbarium (dashed lines; HB-buds, HF-flowers, HS-seeds) and field observations 
(solid lines; FB-buds, FF-flowers, FS-seeds) (‘*’ – denotes introduced species), 2008. 
Significance between monthly averages of plant parts from herbarium and field 
observations is reported in Table 5. 
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Table 5. Monthly means of buds, flowers, and seedheads recorded from plants of Cirsium arvense and C. vulgare either 
housed in the University of Tennessee Herbarium (‘TENN’) or observed in field surveys (‘Field’). Significant (P < 0.05) 
interactions between the source of plant data and the collection month were determined using analysis of variance. 
 

Species Stage May June July August September ANOVA1 
  Field TENN Field TENN Field TENN Field TENN Field TENN      F df P 
Cirsium arvense* Bud  8.75  28.50  7.68 32.13     .2 27.50    .     .     .     . 0.03 1, 158 0.8534 
 Flower  0.02   2.50  2.78   5.89     .   9.00    .     .     .     . 0.14 1, 158 0.7091 
 Seedhead    0     0  2.78     0     .     0    .     .     .     . 2.93 1, 158 0.0890 
Cirsium vulgare* Bud  0.35   6.003  6.49   3.27   3.64   2.77 35.08a4   4.88b 14.78a   1.50b 7.16 4, 180 0.0001 
 Flower    0   1.003  0.86b   1.00b   5.05a   2.46b  6.39   2.13   5.54   2.00 5.54 4, 180 0.0003 
 Seedhead    0     0    0   0.25   5.92a   0.69b  4.63   0.63 19.41a   0.50b 11.77 4, 180 0.0001 
 
1 – Analysis of variance F-values, degrees of freedom, and levels of significance. 
 
2 – No data were collected for these plant parts during these months. 
 
3 – Significance not reported due to no mean calculated, as only one record of C. vulgare in May was available from TENN. 
 
4 – Means for plant parts from different plant data sources with different letters within the same month exhibited significant 
interactions between the source of plant data and the collection month, and only significant interactions are labeled with letters. 
 
* – Introduced species. 
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of C. altissimum than herbarium specimens, and significantly greater flowers per plant 

were documented from herbarium specimens than field observations in August (Fig. 4, 

Table 6).  Numbers of flowers per plant of C. discolor from herbarium specimens were 

significantly greater than field observations in July and August, but significantly more 

flowers were documented from field observations than herbarium specimens in 

September (Fig. 4, Table 6).  Finally, significantly more flowers per plant of C. muticum 

were documented from herbarium specimens than field collections in August (Fig. 4, 

Table 6). 

Although differences in mean number of plant parts may occur in each species at 

some point throughout the year, general plant phenologies from herbarium records and 

field observations followed similar trends for spring-, summer-, and fall-blooming thistles 

(Figs. 2-4). The discrepancy in monthly mean numbers of plant parts between field 

observations and herbarium specimens may reflect a collection bias for plant specimens 

that are suitable and practical for display and storage.  Thistle species found in Tennessee 

have flowerheads ranging in size from ca. 10 to 30 mm in diameter, and the number of 

heads can range from less than 10 to more than 100 on a single plant. Species that possess 

larger heads or produce many buds and flowers may be impractical to mount and/or 

display, so specimens with fewer heads may be preferred by plant collectors to represent 

the species in collections. 

Additionally, several specimen species (C. altissimum, C. carolinianum, C. 

discolor, C. vulgare, and Carduus nutans) from the herbarium showed a significantly 

higher number of blooms in months at the start of the blooming period than field-

observed data (Tables 4, 5, and 6).  Again, plants that are in bloom may be preferred by 
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Figure 4. Average number of buds, flowers and seedheads per plant per month of 
fall-blooming thistles based on specimens from the University of Tennessee 
Herbarium (dashed lines; HB-buds, HF-flowers, HS-seeds) and field observations 
(solid lines; FB-buds, FF-flowers, FS-seeds), 2008.  Significance between monthly 
averages of plant parts from herbarium and field observations is reported in Table 
6.
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Table 6. Monthly means of buds, flowers, and seedheads recorded from plants of Cirsium altissimum, C. discolor, and C. 
muticum either housed in the University of Tennessee Herbarium (‘TENN’) or observed in field surveys (‘Field’). Significant 
(P < 0.05) interactions between the source of plant data and the collection month were determined using analysis of variance. 
 
Species Stage July August September October ANOVA1 
  Field TENN Field TENN Field TENN Field TENN          F df    P    
Cirsium altissimum Bud   .2 . 20.30a3 1.50b 8.19a 2.00b . 0.50 6.00 1, 147 0.0155 
 Flower . . 0.05b 1.00a 3.68 2.14 . 2.63 6.29 1, 147 0.0132 
 Seedhead . . 0 0 1.26 0.14 . 0.13 1.10 1, 147 0.2951 
Cirsium discolor Bud 7.35 1.00 89.05 3.27 33.79 1.26 . 0.40 0.39 1, 173 0.6755 
 Flower 0b 1.00a 0.10b 1.36a 9.35a 1.96b . 1.20 9.70 1, 173 0.0001 
 Seedhead 0 0 0 0 2.53 0.26 . 1.20 1.30 1, 173 0.2747 
Cirsium muticum Bud 3.83 . 13.65 2.50 5.57 2.33 . 0 2.96 1, 157 0.0873 
 Flower 0 . 0.40b 1.25b 6.00 2.67 . 1.00 23.08 1, 157 0.0001 
 Seedhead 0 . 0 0 1.83 0.67 . 1.00 0.23 1, 157 0.6289 
 
1 – Analysis of variance with corresponding F-values, degrees of freedom, and levels of significance. 
 
2 – No data were collected for these plant parts during these months. 
  
3 – Means for plant parts from different plant data sources with different letters within the same month exhibited significant 
interactions between the source of plant data and the collection month, and only significant interactions are labeled with letters. 
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collectors for herbarium specimens (i.e., displaying the critical reproductive stage and 

primary traits used to identify species) instead of those that are in a vegetative or pre-

bloom stage.  Therefore, the differences between bloom numbers may be due to selective 

collection rather than a developmental difference between the two groups.  

Herbarium specimens are valuable records of a facet of natural history within a 

region, and can serve as reference materials for plant identification and general plant 

biology within that region.  When working with field populations of plants, herbarium 

records could be used to obtain general localities of plant populations, estimate when 

surveys could be conducted, ascertain a general timeframe of when a specific plant stage 

may be present, and provide an example of the appearance of specific stages of plant 

development. However, statistical differences between the two sources of plant material 

from each collection month listed above illustrate that if abundance of specific plant parts 

(such as flowers) or other plant growth characteristics during a specific time period is an 

important factor for studies, surveys, etc., monitoring of naturally-occurring populations 

should be implemented to properly estimate plant growth characteristics in the field. 

Comparison of Literature and Field Phenologies 

As with the herbarium specimens, field-observed phenologies generally coincided 

with the flowering periods listed in the literature (Fig. 5). Cronquist (1980) and Carman 

(2001) coincided with field observations of C. horridulum, although both list the 

flowering period throughout the summer. All sources reflected the field-observed 

phenology of C. carolinianum.  However, Weakley (2008) listed the initiation of 

flowering earlier in the year for both C. horridulum and C. carolinianum.  Cronquist 

(1980) and Wofford (1989) listed the flowering period of the introduced thistles (Carduus 
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Figure 5. Comparative thistle phenologies based on literature and field observations. 
All phenologies based on literature sources display only the general flowering 
period.  Phenologies based on field observations depict the initiation of each stage of 
plant development (B=bud, F=flower, S=seed), 2005-2008. 
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nutans, Cirsium arvense, and C. vulgare) later in the year than field observations, while 

Carman (2001) and Weakley (2008) were closer to field observed data for Carduus 

nutans and C. vulgare.  The flowering period listed for C. discolor by Cronquist (1980) 

and Carman (2001) was earlier than observed in the field, and Carman (2001) listed 

flowering times for C. altissimum and C. muticum earlier as well.  Wofford (1989) and 

Weakley (2008) list the flowering period for C. altissimum later than observed, and all 

sources list the flowering period for C. muticum earlier than observed (Fig. 5). 

 Literature sources list general flowering periods, because variation in flowering 

period may occur based on weather, elevation, soil and other site conditions.  Also, 

several literature sources (Cronquist 1980, Wofford 1989, Weakley 2008) estimated plant 

phenologies in their broadest terms, as plant data for these sources were incorporated 

from across a broad geographic region (i.e., several states) rather than in one particular 

state or physiographic province. Therefore, exact agreement with literature sources is not 

expected with all thistle species.   

The marked differences between literature and field observations for the 

introduced thistle species are curious. The flowering periods of C. arvense, C. vulgare, 

and Carduus nutans were listed as initiating about one month after what was observed in 

field popultations by at least two authors. It is unclear why these differences were 

observed.  Flowers were present on herbarium specimens of each of these three species 

during the months flowering initiated in field-observed populations (Figs. 2 and 3, Tables 

4 and 5).  Additionally, field-observed data in this study support observations by 

Sudbrink et al. (2001), in that populations of C. arvense observed during 1997-1998 

showed that in eastern Tennessee plants began flowering in late May, began initiating 
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seedheads in mid June, were producing seed or senescing in late August and mostly 

senescing or vegetative by October.  The earlier flowering of C. arvense observed by 

Sudbrink et al. (2001) and the flowering period of all three introduced thistle species 

documented during this study increase the likelihood of exposure of these thistle 

introduced species to infestation by R. conicus.   

Despite the discrepancies among the herbarium, literature, and field-collected 

data, the phenologies of the thistles species in Tennessee have little variation over time 

(herbarium records date from 1898 to present) and reflect what is present in the current 

literature.  As with comparisons of herbarium and field-observed data, literature sources 

provide valuable information on general plant phenologies, but field monitoring should 

be incorporated into any study involving natural populations to properly estimate 

phenologies of locally-occurring plants.  

Although field observations for these studies were conducted in eastern Tennessee 

(from Van Buren County eastward), plant populations were surveyed across a range of 

elevations and latitudes that occur within this region.  The range of conditions found 

across eastern Tennessee may emulate climatic conditions in other areas of the state and 

influence plant phenologies similarly. Accordingly, plant phenologies in field populations 

in other areas of Tennessee are not expected to be drastically different from what was 

observed during this study.  

Weevil Phenologies and Incidence 

 Weevil phenologies were estimated using the seasonal infestation levels of R. 

conicus and T. horridus on Carduus nutans.  The average number of adult R. conicus per 

plant peaked during the week of 11 May, while the average number of eggs of R. conicus 
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per head peaked the following week (18 May) (Fig. 6).  Adult T. horridus also were 

found in spring plant surveys at low levels in early May and decreased through June (Fig. 

7).  Vacuum samples of C. nutans rosettes from January through March 2009 

documented the presence of T. horridus (between 2.0 and 11.6 adults per sample) 

throughout this study period (Fig. 7).  These data correspond to previous phenologies of 

both weevils observed in Virginia (Surles et al. 1974, Surles and Kok 1976, Trumble and 

Kok 1979, Sieburth et al. 1983) and Tennessee (Grant et al. 1990, Powell et al. 1996).     

 Both species of weevil were documented from Cirsium thistles during this study.  

Eggs of R. conicus were documented on C. arvense, and adults were documented from C. 

arvense and C. vulgare (Fig. 8). Both of these thistle species are introduced and 

considered invasive. During this study, adult T. horridus were documented from five 

Cirsium species, including three native thistles (C. discolor, C. horridulum, and C. 

muticum).  Although R. conicus was not documented on the native C. carolinianum or C. 

horridulum, and neither species has been recorded as a host for R. conicus in other areas 

of the U.S., these two species may be at the greatest risk of non-target feeding by this 

weevil in Tennessee based on their phenologies. However, the infestation levels of these 

two introduced weevils on Cirsium thistles are much lower than the levels at which they 

infest Carduus nutans. For example, a total of 56 T. horridus were observed on C. 

vulgare (Fig. 8) from 8 May through 18 June, much less than the 219 adults of T. 

horridus observed on Carduus nutans (the target host) for the same time period. 

Comparison of Weevil and Thistle Phenologies 

 Based on these observations, several thistle species in Tennessee are synchronous 

with the development of either R. conicus or T. horridus or both.  Adult R. conicus  
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Figure 6. Average number of adult Rhinocyllus conicus and Trichosirocalus horridus 
per Carduus nutans plant and average number of eggs of R. conicus per head per 
each sampling week, 2008. 
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Figure 7. Average number of Trichosirocalus horridus per vacuum sample (2 m x 2 
m area) of rosettes of Carduus nutans, January through March, 2009. 
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Figure 8. Total number of Rhinocyllus conicus (eggs and adults) and Trichosirocalus 
horridus (adults) observed on Cirsium thistles in field surveys, 2008. 



 

 52

become active and begin laying eggs in late April/early May when buds and/or flowers of 

C. nutans, Cirsium arvense, C. carolinianum, C. horridulum, and C. vulgare are present 

(Figs. 2, 3, 6, and 7).  In plant and weevil surveys conducted in 2008, significantly (P < 

0.05) more buds per plant of C. horridulum were observed the week of 4 May than any 

following week.  Significantly (P < 0.05) more buds per plant of C. carolinianum were 

documented during the weeks of 11 May and 18 May than during the weeks of 4 May 

and 25 May. Concurrently, egg levels of R. conicus (observed on Carduus nutans) were 

greater than 20 eggs per bud of C. nutans during the first three weeks of May (Fig. 9). 

Significantly (P < 0.05) more flowers per plant of Cirsium carolinianum were observed 

the weeks of 25 May and 1 June than the three previous weeks, and eggs of R. conicus 

were observed at densities of 29.75 eggs per flower of Carduus nutans during the week 

of 1 June (Fig. 10). Significantly (P < 0.05) more flowers per plant of Cirsium 

horridulum were observed during the week of 25 May than any other week, and eggs of 

R. conicus were observed at densities of 10.16 eggs per flower of Carduus nutans during 

this week (Fig. 10).  Flowering of C. horridulum may have increased during the week of 

18 May, but no observations of C. horridulum were made during that week.  

 The budding and flowering of C. carolinianum and C. horridulum during the 

period of mating and oviposition of R. conicus provides the appropriate conditions in 

which the weevil could expand its host range to include these two native thistles. So, 

while no R. conicus were observed on non-target native thistle species during this study 

period, the potential for non-target activity exists due to the synchronous phenologies of 

these thistles and the weevil.  Non-target activity of R. conicus on C. canescens was not 

observed until 21 years after releases of the weevil for biological control of Carduus  



 

 53

 

 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9. Weekly average numbers of eggs of Rhinocyllus conicus on buds of 
Carduus nutans and weekly average numbers of buds per plant of C. nutans, 
Cirsium carolinianum, and C. horridulum, 2008 (‘*’ denotes introduced thistle 
species). Columns and data points with different letters denote significant (P < 0.05) 
differences within each species, and ‘ns’ denotes no samples collected during that 
date for C. horridulum. 
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Figure 10.  Weekly average numbers of eggs of Rhinocyllus conicus on flowers of 
Carduus nutans and weekly average numbers of flowers per plant of C. nutans, 
Cirsium carolinianum, and C. horridulum, 2008 (‘*’ denotes introduced thistle 
species). Columns and data points with different letters denote significant (P < 0.05) 
differences within each species, and ‘ns’ denotes no samples collected during that 
date for C. horridulum. 

* 
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nutans in Nebraska in 1972 (Louda 1998).  Additionally, R. conicus was released in low 

numbers in Wisconsin in 1975 and only recently was observed utilizing the state-

threatened C. hillii (Canby) Fernald as a host (Sauer and Bradley 2008).  Although the 

preference of R. conicus to feed on Carduus nutans at greater levels than other thistle 

species is well documented (Surles and Kok 1977, Rees 1978, Zwölfer and Harris 1984, 

Arnett and Louda 2002), non-target feeding of R. conicus on native Cirsium continues to 

occur throughout much of the U.S.  Therefore, it is uncertain if or when R. conicus may 

expand its host range to include native Cirsium thistles in Tennessee. 

  Because all of the thistles in Tennessee overwinter as rosettes, all thistles may be 

at potential risk of infestation by T. horridus. The consistent presence of adult T. horridus 

over a three-month period when all thistle species in Tennessee are in the rosette stage 

demonstrates the opportunity that is present for this weevil to feed on non-target thistle 

species (Fig. 7).  Although adults of T. horridus were observed on some non-target thistle 

species, this occurrence does not necessarily signify a host range expansion.  The harmful 

stage of T. horridus is the larval stage, and the adult weevils may vicariously feed on leaf 

tissues of a wide array of plants until they aestivate during the summer.  However, should 

T. horridus begin to oviposit on native thistles and larvae utilize them as hosts, it is 

difficult to estimate the impact larval feeding may have on native thistles or anticipate 

which thistles may become new hosts.  Species of thistle that produce small rosettes, such 

as C. carolinianum and C. arvense, may be at a reduced risk of infestation, as Sieburth 

and Kok (1982) observed that T. horridus oviposited and developed at higher levels on 

larger rosettes of Carduus nutans and C. acanthoides in Virginia. Additionally, few 

observations of non-target feeding by T. horridus have been documented. McAvoy et al. 



 

 56

(1987) found that rosettes of introduced thistle species in Virginia were infested at much 

greater levels (C. nutans – 54%, C. acanthoides and Cirsium vulgare – 20%) with larvae 

of T. horridus than the native C. discolor (ca. 6%), and only recently were T. horridus 

documented to infest C. altissimum in Nebraska (Takahashi et al. 2009). Finally, the 

infestation of native thistles by T. horridus may not have any significant impact on 

overall plant reproduction, as seed numbers of Carduus nutans were not reduced when 

rosettes were infested with low numbers of T. horridus larvae (<20 per plant) (Milbrath 

and Nechols 2004a).  

 Several species of native and exotic thistles may be potentially susceptible to 

infestation by either R. conicus or T. horridus or both.  However, the weevils may not 

prefer or be able to reproduce on some of these species due to many unknown factors.  As 

the size of rosettes may limit the utilization of some thistles by T. horridus, the smaller 

size of flowerheads of some native thistles relative to C. nutans may be less preferable to 

R. conicus.  For example, flowerheads of Cirsium carolinianum are similar in size to 

those of C. arvense, both of which are much smaller than flowerheads of C. nutans (ca. 8-

10 mm vs. ca. 30 mm, respectively).  Although C. arvense flowers later in the year 

(which may effect frequency of infestation), buds are present when R. conicus is 

ovipositing.  This smaller head size may not be utilized or preferred by R. conicus, as 

infestation rates of C. arvense by R. conicus in eastern Tennessee are low (Fig. 7; 

unpublished data). 

 While general seasonal information on native Cirsium thistles and the introduced 

weevils exists in the literature, this study synthesizes these existing data with the current 

conditions of phenological co-occurrence of each weevil species and their potential plant 



 

 57

hosts.  The knowledge gained should allow agencies or institutions that are interested in 

conservation of native plants to consider the development of programs to monitor for 

species of interest to them. Additional studies to document the specific impacts of each 

weevil species on each thistle species are crucial to understanding the current and 

potential interactions in this insect-plant species complex.  This study not only provides 

specific insights into the potential risks of non-target host utilization by introduced 

weevils in Tennessee, but also adds to the greater knowledge of how introduced species 

become integrated into the ecology of new areas. 
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CHAPTER III.  NON-TARGET ACTIVITY OF RHINOCYLLUS 
CONICUS AND TRICHOSIROCALUS HORRIDUS ON NATIVE 

CIRSIUM POPULATIONS IN TENNESSEE 

Introduction 

The biennial herbaceous plant musk thistle, Carduus nutans L., has become a 

prominent weed species since its introduction into North America from Europe in the 

mid-1800s (Stuckey and Forsyth 1971).  Since that time, musk thistle has spread to all 

but three states in the continental U.S., where it is considered a noxious weed species in 

25 states (USDA 2008).  As part of a classical biological control program against musk 

thistle, two weevils [Rhinocyllus conicus Fröelich and Trichosirocalus horridus (Panzer) 

(Coleoptera: Curculionidae)] were introduced from Europe and first released in the U.S. 

in Virginia in 1969 (Surles et al. 1974, Ward et al. 1974).  In many areas where these 

weevils have been released, musk thistle populations have decreased dramatically (Rees 

1977, Lambdin and Grant 1996, Kok 2001). 

Although weevils reduced musk thistle populations in many areas where released, 

non-target feeding on native thistles in the genus Cirsium has been documented for both 

R. conicus and, to a lesser extent T. horridus.  Non-target feeding of R. conicus has been 

documented on at least 25 species of native Cirsium, mostly in the central and western 

U.S. (Rees 1977, Zwölfer and Harris 1984, Goeden and Ricker 1986, Goeden and Ricker 

1987, Turner et al. 1987, Turner and Herr 1996, Louda et al. 1997, Pemberton 2000, 

Sauer and Bradley 2008).  Documentation of non-target feeding by T. horridus on native 

Cirsium has been observed only on field thistle, C. discolor (Muhlenberg ex Willdenow) 

Sprengel (McAvoy et al. 1987) and tall thistle, C. altissimum (L.) Sprengel (Takahashi et 

al. 2009).   
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While the taxonomy of R. conicus has remained stable since the initiation of the 

biological control program, T. horridus recently was divided into a complex of three 

species: T. horridus, and two sibling species, T. briesei Alonso-Zarazaga and Sanchez-

Ruiz and T. mortadelo Alonso-Zarazaga and Sanchez-Ruiz (Alonso-Zarazaga and 

Sanchez-Ruiz 2002). It is believed that the weevils released in North America are either 

T. mortadelo, T. horridus, or a mixture of both species (Alonso-Zarazaga and Sanchez-

Ruiz 2002).  It is unclear which species are present in Tennessee. Adults of both T. 

mortadelo and T. horridus feed on the foliage of the plant and damage the midribs of the 

leaves of the rosettes during oviposition, which has little impact on plant health (Trumble 

and Kok 1979). Larvae feed on the meristems of the developing rosettes, causing necrosis 

of the meristem leading to plant deformities and/or sometimes death (Ward et al. 1974, 

Grant et al. 1990).  

Upon establishment in areas of release, both weevils became widely distributed as 

part of musk thistle biological control programs throughout the continental U.S. (Trumble 

and Kok 1982, McDonald et al. 1994, Kok 2001, Gassmann and Kok 2002).  Initial 

releases of Trichosirocalus spp. in Tennessee were made on a small scale in 1978 with 

weevils obtained from P. Dunn, United States Department of Agriculture, Albany CA. 

Large-scale releases of both weevils were made in 1989 in 11 counties as part of a multi-

year research program funded by the Tennessee Department of Transportation and the 

Federal Highway Administration with weevils obtained from L. Kok, Virginia 

Polytechnic Institute and State University, VA (Lambdin and Grant 1989, Grant et 

al.1990).  Following the establishment of these weevils on musk thistle in several release 

sites, additional releases were made throughout eastern and middle Tennessee throughout 
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the mid-to-late 1990s as part of a multi-year regional program funded by the Sustainable 

Agriculture Research and Education/Agriculture in Concert with the Environment 

(SARE/ACE) granting program.  Populations of Trichosirocalus spp. also were 

established in areas of eastern Tennessee prior to these releases, dispersing into 

Tennessee from release areas in Virginia (Ward et al. 1974, McAvoy et al.1987).  

However, follow-up studies to fully assess establishment, spread, or impact of these 

biological control agents in Tennessee have been limited (Lambdin and Grant 1989, 

Lambdin and Grant 1992, Grant and Lambdin 1993).  In 2005, surveys were initiated to 

investigate the incidence of both R. conicus and T. horridus on native thistles in 

Tennessee. 

Materials and Methods 

Naturally-occurring populations of Cirsium thistles were surveyed in 16 counties 

in eastern Tennessee (Fig. 11). These native species included C. altissimum, soft thistle, 

C. carolinianum (Walter) Fernald & Schubert, C. discolor, yellow thistle, C. horridulum 

Michaux, and swamp thistle, C. muticum Michaux From each population, 10-20 plants, 

depending on total population numbers, were collected and examined for the presence of 

adult weevils (255 plants examined in 2005, 543 plants in 2006, and 425 plants in 2008) 

(Table 7).  Adult weevils were collected and identified using Arnett et al. (2002) and 

genitalia characters presented in Alonso-Zarazaga and Sanchez-Ruiz (2002).  Species 

identification using male and female adults was confirmed by C. O’Brien, Green Valley, 

AZ, and R. Anderson, Canadian Museum of Nature, Ottawa, Ontario, Canada. 
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Figure 11. Counties surveyed for non-target feeding by introduced weevils on native 
thistles (gray), and sites where non-target feeding by Trichosirocalus horridus was 
documented. 
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Table 7. Levels of infestation of native Cirsium thistles in Tennessee by Trichosirocalus  

horridus, 2005-2008*. 

 

 

 

 

 

 

* Thistle populations were not examined for weevil activity during 2007. 
 

 

 

 

% (no.) plants infested Total weevils/total plants 
Thistle species 2005 2006 2008 2005 2006 2008 Total 

 Mean 
weevils/ 

plant 
Cirsium altissimum 25.00 (5) 1.33 (1) 0 6/20 1/75 0/80  7/175 0.040 

C. carolinianum 2.50 (2) 0 0 2/80 0/60 0/100  2/240 0.008 

C. discolor 3.75 (3) 5.64 (23) 5.00 (4) 13/80 69/408 7/80 89/568 0.157 

C. horridulum 0 n/a 5.00 (4) 0/75 n/a 4/80     4/155 0.026 

C. muticum n/a n/a 1.77 (1) n/a n/a 1/85 1/85 0.012 
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Results and Discussion 

Of 1,223 plants examined from 2005 through 2008, no non-target activity of R. 

conicus was observed. However, adult Trichosirocalus spp. were documented occurring 

on all five native Cirsium species, and all were determined to be T. horridus (Table 7, 

Fig. 11).  It is important to note that low numbers of adults were observed on the leaves 

of mature C. carolinianum (0.008 per plant) and C. horridulum (0.026 per plant), and 

only one adult was observed from 85 plants of C. muticum (0.012 per plant). These 

weevils were probably feeding opportunistically on the leaf tissues of C. carolinianum 

and C. horridulum, as the plants exhibited feeding damage similar to that seen on the 

foliage of musk thistle, yet the meristems exhibited no damage.  These adults may have 

developed and matured in nearby musk thistle populations and dispersed into the native 

thistle populations upon emergence in spring. Although only one T. horridus adult was 

documented from C. muticum, two other rosettes examined in that population had 

damaged meristems.  It is unclear if this damage was caused by larvae of T. horridus or 

one of the native weevil species (Baris spp., Conotrachelus spp., Listroderes spp., or 

Rhodobaenus spp.) that have been documented on native thistles in this area. Field-

collected larvae died in the laboratory, and identification could not be confirmed. Larvae 

could have died due to improper rearing conditions in the laboratory, the age of the larvae 

(perhaps too young to complete development) within plant tissues, or other factors. 

 Adults of T. horridus were observed in the greatest numbers and on the  

greatest percentage of plants of C. altissimum and C. discolor.  However, the percentage 

of infested C. altissimum during 2005 was greater than percentages observed in 
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subsequent years due to the relatively low number of total plants sampled, coupled with 

the relatively high numbers of plants infested with T. horridus (Table 7).  When data 

were combined over the three-year period, T. horridus was documented from 3.43% of 

all C. altissimum plants (n = 6 of 175).  Therefore, infestation levels observed in 2006 

and 2008 may be more typical of infestation of C. altissimum by T. horridus.  

Nonetheless, this weevil may be utilizing these species as a reproductive host, as some 

plants exhibited meristematic damage in conjunction with scars along the midribs of 

some leaves, possibly indicating oviposition.  

 These occurrences are the first reports of T. horridus feeding to any degree on C. 

carolinianum, C. horridulum, or C. muticum in the U.S. and only the second record of 

non-target feeding on C. altissimum (Piper and Coombs 2004, Takahashi et al. 2009).  

Furthermore, the infested populations of C. altissimum in Sevier Co. and C. discolor in 

Blount Co. are both within the borders of the Great Smoky Mountains National Park 

(GRSM).  Releases of T. horridus were not made in GRSM, and this finding is the first 

record of T. horridus in the GRSM.  The occurrence of T. horridus in GRSM probably 

resulted from the natural dispersal of this weevil into the area from pastures and roadsides 

infested with musk thistle outside its borders.   

 The presence of T. horridus on these native thistle species is not unexpected, as it 

feeds and develops within the rosettes of several introduced European thistle species 

(Carduus nutans, C. acanthoides L., Cirsium vulgare and others) in the U.S. (Ward et al. 

1974, Kok 1975, Sieburth and Kok 1982, McAvoy et al.1987).  Because all Cirsium 

species exhibit a rosette stage as part of their development, the likelihood exists that T. 

horridus would eventually utilize new hosts for reproduction.  
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 Conversely, the absence of R. conicus on any plants is somewhat unexpected.  

Although none of the Cirsium species from which R. conicus has been documented in 

other regions of the U.S. occur within Tennessee, the seemingly broad host range of R. 

conicus would imply that non-target feeding would occur in Tennessee as well. 

Continued monitoring of native Cirsium species in Tennessee is needed to more fully 

understand their relationship with this introduced weevil. 

 These observations of T. horridus infesting native thistle species indicate that 

prolonged and continued exposure increases the potential for non-target interactions 

among native and introduced species with synchronous biologies. However, the impact of 

feeding by larvae of T. horridus on the reproductive potential of native plants is 

uncertain. While larval feeding in the rosettes of musk thistle is believed to cause reduced 

fitness and contribute to reduction in thistle populations, plants rarely die or are prevented 

from producing seed, even with high larval infestations (ca. 40-50 larvae/rosette) 

(Sieburth et al. 1983, Milbrath and Nechols 2004a, b).  Also, several native insect species 

feed within the meristematic tissues of native thistles, either in the rosette stage or after 

the plant has begun to elongate, with marginal impact on plant seed production 

(unpublished data). Further research and monitoring will elucidate the relationship 

between these introduced weevils and native thistle species. 
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CHAPTER IV. IMPACTS OF LARVAL FEEDING OF 
RHINOCYLLUS CONICUS ON PLANT REPRODUCTION AND 

LEVELS OF HOST UTILIZATION ON FIELD-CAGED TARGET 
AND NON-TARGET THISTLES IN TENNESSEE 

Introduction 

Musk thistle, Carduus nutans L., is a biennial herbaceous species native to 

Europe, western Asia, and the Mediterranean (Hodgson and Rees 1976, Zwölfer and 

Harris 1984).  It was first introduced into North America in the mid-1800s (Stuckey and 

Forsyth 1971) and is now recorded from 45 U.S. states and at least five Canadian 

provinces (McCarty 1978, Desrochers et al. 1988, USDA 2008).  The introduction of 

exotic natural enemies was promoted and projected to provide a long-term, sustainable 

approach to reducing populations of musk thistle. Releases of Rhinocyllus conicus 

Fröelich were first made in Canada in 1968 (Frick 1978b), and were followed in 1969 by 

releases in California (Goeden 1978), Montana (Hodgson and Rees 1976), and Virginia 

(Surles et al. 1974).  Upon establishment, R. conicus was widely redistributed as part of 

musk thistle biological control programs throughout the continental U.S. (Trumble and 

Kok 1982, Townsend et al. 1991, Lambdin and Grant 1992, Buntin et al. 1993, Gassmann 

and Kok 2002). Releases of R. conicus were made throughout Tennessee from 1989 

through the 1990s, with populations of musk thistle reduced by 94% in some areas 

(Lambdin and Grant 1992, Grant and Lambdin 1993, Lambdin and Grant 1996).   

While early host specificity tests and host data from its native range suggested 

that R. conicus could feed and develop on several genera and species of thistles in the 

tribe Cardueae (Asteraceae), the projected benefits of its release as a biological control 

agent outweighed the potential limitations (Zwölfer and Harris 1984, Boldt 1997).  R. 
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conicus subsequently was approved for release into the U.S. (Surles et al. 1974, Frick 

1978a).  Recent documentation of non-target impacts of R. conicus on native thistles in 

the north central and western U.S., however, illustrates the importance of assessing the 

impact of these weevils on target and non-target thistles in areas where they were 

released.  The first record of R. conicus feeding on native North American thistles in the 

genus Cirsium was in Montana and Canada on Cirsium undulatum (Nuttall) Sprengel and 

Cirsium flodmannii (Rydberg) Arthur (Rees 1977, 1978, Zwölfer and Harris 1984).  

Insect surveys of native thistles in California documented larvae of R. conicus, which is 

the developmental stage of the weevil most damaging to plants, feeding on natural 

populations of 13 native Cirsium species (Turner et al. 1987). One of these species 

[Cirsium fontinale (Greene) Jepson var obispoense J. T. Howell] is listed as Federally 

endangered (Turner and Herr 1996), and three [Cirsium campylon Sharsmith, Cirsium 

ciliolatum (Henderson) J. T. Howell, and Cirsium hydrophilum (Greene) Jepson var 

vaseyi (Gray) J. T. Howell] are potential candidates to be listed as Federally threatened or 

endangered (Goeden and Ricker 1986, 1987, Turner et al. 1987).  

While the significance and impact of R. conicus on many of these native species 

are not yet known, studies of the feeding of R. conicus on Platte thistle, C. canescens 

Nuttall, have documented significant impacts due to larval feeding within flowerheads.  

Larvae of R. conicus were first documented feeding in the flowerheads of C. canescens in 

Nebraska in 1993, and since that time R. conicus populations have grown to infest over 

25% of observed C. canescens plants (Louda et al. 1997, Louda 1998, Louda 2000a).  

Additionally, feeding of R. conicus in seedheads reduced the number of viable seeds in 

infested heads by 86%, which is predicted to decrease population numbers of C. 
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canescens (Louda 2000a).  Concern exists that R. conicus will continue its host range 

expansion and utilize Pitcher’s thistle [Cirsium pitcheri (Torrey) Torrey and Gray], a 

Federally listed threatened species that is closely related to C. canescens (Pavlovic et al. 

1992, Louda 1998, Louda 2000b).  

The impact of R. conicus on non-target thistle species in the southern 

Appalachians is poorly known.  Five native species of thistles in the genus Cirsium are 

found in Tennessee [tall thistle, C.  altissimum (L.) Sprengel, soft thistle, C. carolinianum 

(Walter) Fernald & Schubert, field thistle, C. discolor (Muhlenberg ex Willdenow) 

Sprengel, yellow thistle, C. horridulum Michaux, and swamp thistle, C. muticum 

Michaux] (Fig. 12) (TENN 2008).  C. carolinianum and C. horridulum bloom in the 

spring (May through July), with the remaining native thistles (C. altissimum, C. discolor, 

and C. muticum) blooming later in the year (approximately from August through 

October) (Wofford 1989, Gleason and Cronquist 1991). These native species are widely 

distributed throughout the eastern U.S., each occurring in at least 15 states in addition to 

Tennessee (USDA 2008). No non-target activity of R. conicus on native thistles has been 

reported in this region. 

 Two introduced Cirsium species [Canada thistle, C. arvense (L.) Scopoli, and 

bull thistle, C. vulgare (Savi) Tenore] also occur in Tennessee (TENN 2008), and both 

species are considered invasive in the state (Fig. 12) (TNEPPC 2008).  Both C. arvense 

and C. vulgare have wide flowering periods and can bloom from late June through 

October in the southern Appalachians (Wofford 1989). These two introduced species can 

serve as hosts of R. conicus, but at lower levels than Carduus nutans. 
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Figure 12. Native and introduced thistle species occurring in Tennessee: A) Carduus 
nutans*, B) Cirsium arvense*, C) C. altissimum, D) C. carolinianum, E) C. 
horridulum, F) C. discolor, G) C. muticum, and H) C. vulgare* (‘*’ denotes 
introduced species). Photo of C. arvense courtesy of Integrated Pest Management 
and Biological Control Laboratory, The University of Tennessee. 
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In surveys conducted from 2004 through 2008, no R. conicus were observed on 

non-target native thistles (Chapter 3). However, controlled studies are necessary to 

quantify levels of impact (tissue damage, decreased seed numbers, etc.) these weevils 

may have on plants, should they begin utilizing native thistles. Caged plant studies are an 

effective way to restrict herbivory to specific areas of plants, allowing quantification of 

the impacts of a known number of weevils on a known number of plant parts. Therefore, 

a study was initiated in 2008 using field-caged plants to evaluate the impact of larval 

feeding of R. conicus on plant reproduction and assess levels of host utilization of native 

and introduced thistles in eastern Tennessee. 

Materials and Methods 

Adults of R. conicus were collected from field populations of C. nutans in Knox 

and Cumberland Counties, Tennessee, for use in this study.  Beginning 22 April 2008, 

adult R. conicus were shaken from bolting stems of C. nutans into sweep nets.  Adult 

weevils were then placed in a clear plastic container (31 x 31 x 41 cm with four 12-cm 

screened holes for ventilation) with bouquets of clipped C. nutans and taken to the 

laboratory, where they were held and observed for mating activity. Two pairs of 

copulating R. conicus were placed in one 29.6 ml cup (two male and two female weevils 

per cup) with a moistened cotton ball which was then sealed with a plastic lid and held in 

a growth chamber at 15 °C until weevils were placed on caged plants in the field.  Adult 

weevils were contained in cups no longer than four days prior to use in study. 

From 24 April to 7 September 2008, one to two populations each of C. nutans and 

the seven Cirsium species that occur in Tennessee were selected, and plants from each 
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population were caged to study the impact of introduced weevils (Table 8). To enclose R. 

conicus adults on plants, one nylon mesh bag (45 x 50 cm; Delnet® pollination bags) was 

placed on the mainstem of each plant, and the opening of the bag was bunched together 

around the plant stem and tied with plastic flagging.  In each study population, one of 

three treatments was applied to each plant (10-20 plants per treatment per population, 60 

plants per thistle species; Table 8): terminal heads of mainstems enclosed in mesh bags 

with four field-collected R. conicus adults (two male, two female), terminal heads of 

mainstems enclosed in mesh bags with no weevils (caged control), or plants flagged, but 

left uncaged as an open control.  Treatments were left on the plants for four weeks. After 

this time, plants of C. nutans, Cirsium arvense, C. carolinianum, and C. horridulum were 

flowering and/or initiating seeding and, therefore, were clipped at ground level, placed in 

a plastic bag, and taken to the laboratory for processing. Weevils were removed from the 

bags of C. altissimum, C. discolor, C. muticum, and C. vulgare after four weeks of 

exposure to weevils, and the cages were left on these species until collected from the field 

in mid-summer to fall to prevent other herbivorous insects from accessing the caged plant 

parts (Table 8). In the laboratory, the head width of buds, flowers, and seedheads per 

plant, and numbers of seeds per flowerhead were measured and recorded.  Also, the 

number of eggs, larvae, pupae and adults of R. conicus were recorded from all buds, 

flowers, and seedheads.  

This caged plant study was modified before it was repeated in 2009 (Table 9). 

Treatments of R. conicus were restricted to Carduus nutans, Cirsium arvense, C. 

carolinianum, C. horridulum, and C. vulgare, as C. altissimum, C. discolor, and C. 

muticum do not bud or flower during the time the weevil larvae require those plant 
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Table 8. Site information for Carduus nutans and seven Cirsium species at 13 field 
populations used to study the effects of Rhinocyllus conicus on caged plants, 2008. 

 

 

 

 

 

 

 

 

 

 

 
1 – One population containing 60 plants each of C. altissimum, C. muticum and C. 
vulgare were used during the study.  Two populations containing 30 plants each were 
used for all other species included in this study. Treatments (caging with adult R. conicus, 
caging without adult R. conicus, and uncaged plants) were divided equally among the 
plants within a population. 
 
2 – Duration = the time period that treatments were applied to plants before they were 
taken to the laboratory for processing.  
 
* – Introduced species. 

 

 

 

 

 

   Thistle species1    County       Duration2 
Carduus nutans* Knox  30 Apr – 27 May 
 Roane 21 May – 10 June 
Cirsium altissimum Polk  24 Apr – 18 August 
C. arvense* Knox   6 May – 13 June 
 Anderson  27 May – 23 June 
C. carolinianum Bledsoe    2 May – 30 May 
 Cumberland    7 May – 3 June 
C. discolor Cumberland  21 May – 7 September 
 Cumberland  21 May – 7 September 
C. horridulum Bradley 29 April – 27 May 
 Bradley 29 April – 27 May 
C. muticum Morgan  13 May – 20 August 
C. vulgare* Knox    8 May – 17 July 
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Table 9. Site information for Carduus nutans and four Cirsium species at nine field 
populations1 (30 plants per population) used to study the effects of Rhinocyllus 
conicus on caged plants, 2009. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
1 – One population containing 30 plants of C. vulgare was used during the study.  Two 
populations containing 30 plants each were used for all other species included in this 
study. Treatments (caging with adult R. conicus, caging without adult R. conicus, and 
uncaged control plants) were divided equally among the plants within each population. 
 
2 – Duration = the time period that treatments were applied to plants before they were 
taken to the laboratory for processing.  
 
* – Introduced species. 

 

 

  Thistle species    County           Duration2 
Carduus nutans* Roane    29 April – 29 May  
 Knox     29 April – 6 June 
Cirsium arvense* Knox     19 May – 30 June 
 Anderson     19 May – 14 June 
C. carolinianum Bledsoe       8 May – 7 June 
 Cumberland       8 May – 6 June 
C. horridulum Bradley    28 April – 1 June 
 Bradley    28 April – 1 June 
C. vulgare* Roane     28 May – 22 June 
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structures to be available. Beginning 26 April 2009, adult R. conicus were collected from 

field populations of C. nutans in Knox and Cumberland Counties, Tennessee, and were 

processed for use in caged plant studies in the same manner implemented in 2008.  As in 

2008, weevils used in the field study were retained in cups for no longer than four days 

prior to use in the study.  From 28 April to 30 June 2009, treatments were applied to 

plants from two populations (30 plants per population) of each thistle species, except for 

a single population of Cirsium vulgare (no other suitable population was located) (Table 

9). At each population, one of three treatments was applied to each of 30 plants (10 plants 

per treatment): apical buds/flowers of mainstems enclosed in mesh bags with four field-

collected R. conicus adults (two male, two female), apical buds/flowers of mainstems 

enclosed in mesh bags with no weevils (caged control), or plants flagged, but left 

uncaged as an open control (Table 9). Treatments remained in the field until a majority 

(ca. >50 %) of the caged heads initiated flowering, after which plants were clipped at 

ground level, placed in a plastic bag, and taken to the laboratory for processing.   

In the laboratory, plant height, the head width diameter of buds, flowers, and 

seedheads per plant were measured, and the number of eggs of R. conicus were recorded.  

Unlike 2008, where heads of plants were immediately dissected, heads of all plants were 

retained in a growth chamber (26 °C) for two to four weeks following removal from the 

field to allow maturation of immature R. conicus to adulthood.  Following this period, 

number of larvae, pupae and adults of R. conicus from all buds, flowers, and seedheads, 

and numbers of seeds per flowerhead were recorded.  Body length of adult R. conicus has 

been used as a measure of weevil fitness, with smaller adults believed to be less fit to 

mate and/or produce fewer offspring.  Body size also is used as an indicator of host  
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suitability, with host plants that produce larger weevils considered more suitable than  

those that produce smaller adults (Rowe and Kok 1984, Turner et al. 1987).  The lengths 

(distance between the anterior edge of the eyes to posterior tip of elytra in mm) of all 

adult R. conicus recovered from plants caged with R. conicus of each thistle species were 

measured using a Ziess® Stemi SVG microscope with an ocular micrometer calibrated 

with a Mini-scale® measuring scale (0.1mm increments) and recorded.  

 Analysis of variance was performed to compare the number of seeds produced by 

control plants with seed production of weevil-treated plants.  For cage studies conducted 

in 2008, significance (P < 0.05) among the mean numbers of seeds per flower for each 

treatment and each thistle species were compared using least significant differences.  

Data for each species were normalized using either log transformation (Cirsium 

altissimum, C. carolinianum, C. discolor, C. horridulum, and C. muticum) or rank 

transformation (C. arvense, C. vulgare, Carduus nutans).  For cage studies conducted in 

2009, data for all species were rank transformed, and significant (P < 0.05) differences 

among mean seed numbers per flower for each treatment and each thistle species were 

compared using least significant differences.   

 Analysis of variance also was performed on plants caged with R. conicus to 

compare measures of utilization of thistle species by R. conicus and to estimate the 

influence of each thistle species on adult weevil fitness. Ovipositional activity on each 

thistle species was estimated by comparing significance (P < 0.05) among the mean 

number of eggs of R. conicus per head (bud, flower and seedhead) using least significant 

differences.  As a general comparison of the levels of host utilization of each thistle 

species, significance (P < 0.05) among mean number of R. conicus (total larvae, pupae, 
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and adults) per head was determined using least significant differences. Data for egg 

numbers and R. conicus per head were normalized using log transformation.  As a 

standardized measure of host utilization, significance (P < 0.05) among the mean number 

of R. conicus per centimeter of head width diameter of each thistle species was estimated 

using least significant differences, and data were normalized using rank transformation. 

To estimate the influence of thistle species on adult weevil fitness based on body length, 

the least significant differences test was used to determine significant (P < 0.05) 

differences among the mean body lengths of adult R. conicus reared from weevil-treated 

plants of the different thistle species in 2009, and data were normalized using rank 

transformation.  The mean length of adult R. conicus recovered from caged and uncaged 

plants of C. nutans were compared separately to test for cage effects on length of R. 

conicus using least significant differences and rank-transformed data.  All analyses were 

conducted using SAS 9.2 (SAS Institute, Cary, North Carolina). 

Results and Discussion 

This study documented several significant interactions among R. conicus and 

thistle species in Tennessee. Significantly (P < 0.05) more seeds per flower were 

produced by caged and uncaged control plants of Cirsium carolinianum and C. vulgare 

and caged control plants of C. arvense and C. horridulum, when compared to plants 

caged with four adult R. conicus in 2008 (Fig. 13A). Compared to caged control plants, 

both spring-blooming native thistle species showed reductions (by ca. 85% in C. 

carolinianum and ca. 35% in C. horridulum) in seed numbers due to larval feeding of R. 

conicus (Fig. 13A).  No significant (P < 0.05) differences were observed in seeds per  



 

 77

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 

Figure 13. Average number of seeds per flower of each thistle species among plants 
caged with Rhinocyllus conicus and caged and uncaged control (no R. conicus 
applied) plants, A) 2008 and B) 2009 (‘*’ denotes introduced thistle species). 
Columns with different letters within species denote significant (P < 0.05) 
differences. 

A
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flower among treatments in fall-blooming thistles (C. altissimum, C. discolor, and C. 

muticum, not shown).  In 2009, significantly (P < 0.05) more seeds were produced by 

uncaged control plants of C. arvense and C. vulgare when compared to plants caged with 

four adult R. conicus, and although not significant (P < 0.05), seed production of native 

thistles caged with R. conicus was reduced (by ca. 16% in C. carolinianum and ca. 24% 

in C. horridulum) when compared to caged controls (Fig. 13B). Although there were no 

significant (P < 0.05) differences in seeds per flower among treatments on plants of 

Carduus nutans in 2008, significantly (P < 0.05) fewer seeds were produced by plants 

caged with R. conicus (ca. 46% reduction compared to caged control) than by caged and 

uncaged control plants in 2009 (Fig. 13). 

The differences observed among levels of feeding on these Cirsium thistles over 

the two-year study period may be indicative of the preference of R. conicus to feed on 

Carduus nutans.  Levels of feeding by R. conicus (i.e., none) were as expected on the  

fall-blooming species in 2008, as these species do not develop buds necessary for larval 

development during the time R. conicus is reproductively active in the spring. Despite 

larval feeding and development in heads of spring- and summer-blooming Cirsium 

species enclosed in cages with R. conicus, only low levels of R. conicus feeding have 

been documented on Cirsium arvense and C. vulgare in naturally-occurring populations, 

and no non-target feeding has been documented on C. carolinianum or C. horridulum 

(see Chapters 2 and 3).  It is important to note that all larvae in caged plants treated with 

R. conicus were the offspring of two females per plant, so perhaps low levels of non-

target feeding of R. conicus are all that is required to negatively impact seed production 

of some thistle species. Although the possibility of feeding by R. conicus on the non-
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target native species in this study exists, the extent to which it may occur in natural 

populations, if ever, remains unclear. 

While the impact of R. conicus on seed numbers of C. nutans was as expected in 

2009, the lack of differences among control plants and plants exposed to R. conicus in 

2008 is not indicative of these plant/insect interactions in Tennessee. Only flowerheads of 

each species were included in the analyses, because it is difficult to accurately determine 

potential seed numbers in buds or general seed numbers in seedheads that have begun to 

senesce and lose seeds.  However, many buds and seedheads were present on plants of C. 

nutans when the plants were collected from the field in 2008, and statistical estimates 

were made on a small number of flowerheads of C. nutans (n =  12).  When seedheads 

were also included in the analyses (total heads analyzed = 48), significantly fewer seeds 

were observed in open control plants (mean = 119.97; t = 5.66; df = 47; P < 0.0001) than 

heads caged with R. conicus (mean = 199.41; t = 10.44; df = 47; P < 0.0001) or caged 

control plants (mean = 279.20; t = 8.54; df = 47; P < 0.001), and significant differences 

were observed between heads caged with R. conicus and caged control plants.  The 

provision of allowing more than ca. 50% of heads to begin flowering in 2009 instead of 

leaving plants in the field for a set amount of time allowed for more uniform seed counts 

from greater numbers (n = 120) of flowerheads of C. nutans in 2009. 

On heads caged with R. conicus, significantly (P < 0.05) more eggs per head were 

recorded on C. nutans, Cirsium carolinianum, and C. horridulum than on C. arvense and 

C. vulgare in 2008 (Fig. 14A). In 2009, significantly (P < 0.05) more eggs were recorded 

on Carduus nutans and Cirsium horridulum than C. arvense, C. carolinianum, and C. 

vulgare (Fig. 14B). Both C. arvense and C. vulgare bud and bloom later in the year than  
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Figure 14. Average number of eggs of Rhinocyllus conicus per head for each thistle 
species caged with R. conicus, A) 2008 and B) 2009 (‘*’ denotes introduced thistle 
species). Columns with different letters among species denote significant (P < 0.05) 
differences.  

A

B
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does Carduus nutans, and are not utilized as frequently as host plants by R. conicus 

(personal observation).  Therefore, lower levels of oviposition are expected on these 

species when compared to C. nutans.  Plants of both Cirsium carolinianum and Cirsium 

horridulum exhibited levels of oviposition comparable to those observed on Carduus 

nutans in 2008. While in 2009 similar levels of oviposition of R. conicus were observed 

on C. nutans and Cirsium horridulum, R. conicus oviposited on C. carolinianum at much 

lower levels than the previous year.  The reason for differences in egg numbers on C. 

carolinianum between years is unclear, but oviposition of R. conicus on this species in 

both years indicates suitability as a potential host species. 

Further examination of heads caged with R. conicus documented significantly (P 

< 0.05) more R. conicus recorded per head of C. nutans than from any other thistle 

species in 2008 and 2009 (Fig. 15). However, significantly (P < 0.05) more R. conicus 

per centimeter of plant head (bud, flower, or seedhead) width were observed in Cirsium 

carolinianum than other species in 2008, with significantly (P < 0.05) more R. conicus 

per centimeter head width observed in C. nutans in 2009 (Fig. 15B).  Host utilization 

(total weevils/head) also was significantly (P < 0.05) greater in C. horridulum than C. 

vulgare in 2008 and C. arvense in both years.  The higher levels of infestation of both 

native thistles (C. carolinianum and C. horridulum) compared to C. arvense and C. 

vulgare (both introduced thistles) indicate that these native species may be at least as 

suitable a host species, although no naturally-occurring non-target activity has been 

observed in either species (Chapters 2 and 3, Fig. 15).   

While the mean number of R. conicus per head can be influenced by the head 

width of the plant (i.e., larger heads provide greater area for more larvae), the mean  
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Figure 15. Average number of Rhinocyllus conicus (larvae, pupae, and adults) per 
head (dark column) and average number of R. conicus per centimeter of plant head 
width diameter (light column) for each thistle species caged with R. conicus, A) 2008 
and B) 2009 (‘*’ denotes introduced thistle species). Columns of different shades 
with different letters among species denote significant (P < 0.05) differences.  

A

B
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R. conicus per cm of plant head width diameter is standardized across species.  The 

relatively smaller average head size of C. carolinianum (ca. 10 mm diameter) may render 

it less preferable or attractive to R. conicus as a host plant compared to C. nutans (ca. 30 

mm diameter), but also may enable greater damage by fewer weevils per head than C. 

nutans should non-target feeding occur in natural populations.  

The number of R. conicus per head and per cm plant head width followed similar 

trends as egg loads of R. conicus for most thistle species during both years (Figs. 14 and  

15). However, mean egg numbers per head on C. horridulum were not significantly (P < 

0.05) different from Carduus nutans in either year, yet R. conicus per head and per head 

width on Cirsium horridulum were significantly fewer than Carduus nutans both years.  

These differences may indicate that while R. conicus may be capable of laying high 

numbers of eggs on Cirsium horridulum, few of those eggs hatch or result in larval 

development within the head. Unlike the other thistle species in this study, C. horridulum 

has leaf-like outer bracts that enclose the head (receptacle) (Fig. 12E). These bracts may 

provide an obstacle through which it is more difficult for newly-hatched R. conicus to 

maneuver as they attempt to move into the receptacle and account for lower levels of R. 

conicus per cm of plant head width despite high numbers of eggs per head.   

Mean body lengths of adult R. conicus reared on different thistle species ranged 

from 5.38 mm (Cirsium carolinianum) to 5.74 mm (C. vulgare), but no significant 

differences in body lengths were documented (Fig. 16).  Additionally, no significant (F = 

1.28; df = 1, 407; P > 0.2589) differences were documented in body lengths of R. conicus 

from caged (5.5 mm) versus uncaged (5.63 mm) flowers of Carduus nutans.  Because R. 

conicus were collected in large numbers from uncaged plants of only C. nutans, this test  
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Figure 16. Average body lengths (mm) of adult F1 Rhinocyllus conicus reared and 
recovered from thistle species caged with R. conicus, 2009 (‘*’ denotes introduced 
thistle species). Columns with different letters among species denote significant (P < 
0.05) differences. 
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was performed only for plants of C. nutans. The lack of differences between R. conicus 

reared from caged and uncaged C. nutans demonstrates the lack of impact of caging on 

the development of the weevils inside of flowerheads.  Because body length of adult R. 

conicus has been used as a measure of weevil fitness and an indicator of host suitability 

(Rowe and Kok 1984, Turner et al. 1987), the similarity in body lengths of R. conicus 

reared from different thistle species indicates that each of these species is a potential 

suitable host. 

Other studies have confirmed the host preference of R. conicus for C. nutans 

(Arnett and Louda 2002) and have demonstrated its ability to reduce seed production 

long after initial releases and subsequent establishment in an area (Kok 2001).  R. conicus 

continues to expand its host range to include native Cirsium species (Pemberton 2000, 

Sauer and Bradley 2008).  Future studies could be conducted on chemical or other cues 

that may be used by R. conicus to search for and/or determine suitable host plants.  These 

studies may provide a better understanding of the factors that enable R. conicus to expand 

its host range to thistle species native to North America. 

This study is the first documentation of the ability of R. conicus to develop, and 

accordingly reduce viable seed numbers, in heads of either C. carolinianum or C. 

horridulum. Results from this study demonstrate that R. conicus maintains an apparent 

preference for C. nutans as a reproductive host plant in naturally-occurring populations in 

this region. This weevil, however, has the ability to utilize the native thistles Cirsium 

carolinianum and C. horridulum as host species.  Reductions in seed numbers of both 

native species were observed in both years of the study, with significant reductions 

occurring during 2008. R. conicus readily oviposited on both native thistles at similar 
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levels to those observed on Carduus nutans in 2008, and both native thistles exhibited 

significantly greater egg loads than Cirsium arvense or C. vulgare both years. Also, 

infested heads of C. carolinianum contained proportionately more R. conicus per cm of 

plant head width than any introduced thistle species in 2008, and both native species 

contained proportionately greater numbers of R. conicus per head than C. arvense or C. 

vulgare both years of the study.  This information, coupled with the lack of significant 

variation in body length between R. conicus reared on native thistles and its target host 

Carduus nutans, further signifies the suitability of Cirsium carolinianum and C. 

horridulum as host species.   

The evidence of the potential for R. conicus to utilize these species is tempered by 

the fact that no non-target activity has been observed in naturally-occurring populations 

of either species.  It is important to note, however, that R. conicus was present in 

Nebraska but not observed utilizing C. canescens in annual monitoring efforts for 16 

years prior to its initial documentation on this native species (Louda 1998). Monitoring of 

C. carolinianum and C. horridulum should be considered in land-management areas 

where conservation of native species is a priority.  These monitoring efforts could 

provide early detection of non-target feeding by R. conicus if it should occur on these 

native species and improve information on which to base appropriate management 

decisions.   
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CHAPTER V. PLANT RESPONSES TO TRICHOSIROCALUS 
HORRIDUS ON FIELD-CAGED NON-TARGET NATIVE THISTLES 

IN TENNESSEE  

Introduction 

Since its introduction from its native range in Europe into North America in the 

mid-1800s, musk thistle, Carduus nutans L., has become a prominent weed species and is 

now recorded from 45 U.S. states and at least five Canadian provinces (Stuckey and 

Forsyth 1971, McCarty 1978, Desrochers et al. 1988, USDA 2008).  Because chemical 

and mechanical control methods can be costly, time consuming, and impractical to 

implement in some areas, the introduction of exotic natural enemies was promoted and 

projected to provide a long-term, sustainable approach to reducing populations of musk 

thistle. As part of the biological control program against musk thistle, releases of 

Trichosirocalus horridus (Panzer) were first made in Virginia in 1974 (Ward et al. 1974, 

Trumble and Kok 1979), followed by releases in Canada in 1976 (Dunn 1978).  Adults of 

T. horridus lay eggs on the underside of the leaves in the midribs of the rosette stage of 

the plant, and the larvae move down through the midrib to the apical meristem of the 

rosette.  Feeding of the larvae damages the meristem, causing plant deformities and 

sometimes death (Trumble and Kok 1982, Gassmann and Kok 2002).  Upon 

establishment in areas of release, T. horridus was widely redistributed as part of musk 

thistle biological control programs throughout the continental U.S. (Trumble and Kok 

1982, Grant et al. 1990, McDonald et al. 1994, Kok 2001, Gassmann and Kok 2002).  

Recently, T. horridus was divided into a complex of three species: T. horridus, 

and two sibling species, T. briesei Alonso-Zarazaga and Sanchez-Ruiz and T. mortadelo 

Alonso-Zarazaga and Sanchez-Ruiz (Alonso-Zarazaga and Sanchez-Ruiz 2002). It is 
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believed that the weevils released in North America are either T. mortadelo, T. horridus, 

or a mixture of both species (Alonso-Zarazaga and Sanchez-Ruiz 2002). To date, T. 

horridus is the only species that has been identified occurring in Tennessee (Wiggins et 

al. 2009). 

While another weevil species [Rhinocyllus conicus (Fröelich)] released in tandem 

with T. horridus has been observed to feed on several native species of thistles in the 

genus Cirsium, relatively little non-target feeding by T. horridus has been observed.  Low 

levels of non-target feeding of T. horridus on native thistles was first documented in field 

surveys of the native field thistle, C. discolor (Muhlenberg ex Willdenow) Sprengel, in 

Virginia (McAvoy et al. 1987). More recently, T. horridus has been documented to infest 

the native tall thistle, C. altissimum (L.) Sprengel, in Nebraska (Takahashi et al. 2009), 

and adult T. horridus were observed on all five native Cirsium species that occur in 

Tennessee (Chapter 3, Wiggins et al. 2009). The significance and impact of these new 

host associations between T. horridus and native thistles are concerning but are not yet 

fully understood. 

Because adult T. horridus only recently have been observed on native Cirsium 

species in Tennessee, potential impact on non-target thistle species in the southern 

Appalachians is poorly known.  Five native species in the genus Cirsium are found in 

Tennessee [C.  altissimum, soft thistle, C. carolinianum (Walter) Fernald & Schubert, C. 

discolor, yellow thistle, C. horridulum Michaux, and swamp thistle, C. muticum 

Michaux] (TENN 2008).  These native species are widely distributed throughout the 

eastern U.S., each occurring in at least 15 states in addition to Tennessee (USDA 2008). 

These native species bloom at different times of the year, but all species form rosettes 



 

 89

prior to bolting and blooming as part of their development (Wofford 1989, Gleason and 

Cronquist 1991).  

Two introduced Cirsium species [Canada thistle, C. arvense (L.) Scopoli, and bull 

thistle, C. vulgare (Savi) Tenore] also occur in Tennessee (TENN 2008), and both species 

are considered invasive in the state (TNEPPC 2008).  Both C. arvense and C. vulgare 

have wide flowering periods and can bloom from late June through October in the 

southern Appalachians (Wofford 1989). As with the native Cirsium species, these two 

introduced thistles form rosettes before bolting and blooming. 

 Releases of T. horridus were made throughout Tennessee from 1989 through the 

early 1990s, but limited follow-up studies have been conducted to fully assess 

establishment, spread, or impact (Lambdin and Grant 1989, Grant and Lambdin 1993, 

Lambdin and Grant 1996).  An effective way to allow the weevils to feed on the plants to 

determine plant responses is the use of mesh bags or cages.  These cages can restrict 

weevils to specific plants and allow the response of the plant to exposure to a specific 

herbivore to be quantified.  Therefore, a study was initiated in 2009 to evaluate the plant 

responses in height, seed production, bud and flower production, and the size of 

flowerheads of native and introduced thistles to feeding of T. horridus on field caged 

plants. 

Materials and Methods 

Beginning 11 February through 18 March 2009, T. horridus were collected in 

vacuum samples from populations of at least 30 plants of Carduus nutans in Knox (n = 

2), Cumberland (n = 1), and Bradley (n = 1) Counties for use in this cage study. While T. 
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horridus are present on plants during this time of year, the small size of weevils and the 

close proximity of rosettes to the ground slow collection efforts of weevils. To facilitate 

collection of adult T. horridus for use in the study, a leaf blower (Husqvarna model 225B 

E-tech) modified after Harper and Guynn (1998) was used to collect adults of T. 

horridus.  At each collection population, the rosettes and soil immediately surrounding 

them were vacuumed, and each sample was stored in an individual cloth mesh bag, taken 

to the laboratory and examined for presence of adult weevils.  In the laboratory, adult 

weevils were placed in a clear plastic container (31 x 31 x 41 cm with four 12-cm 

screened holes for ventilation) with bouquets of clipped C. nutans, where they were held 

and observed for mating activity. Two copulating pairs of T. horridus were placed in one 

cup (29.6 ml) with a moistened cotton ball which was then sealed with a plastic lid and 

held in a growth chamber at 7 °C until placed on caged plants in the field.  Adult weevils 

were contained in cups no longer than four days prior to application onto study plants.  

From 13 February through 20 March 2009, treatments were applied to rosettes 

from two populations of each thistle species, except for a single population of Cirsium 

muticum (adequate numbers of rosettes for use in the study were present at only one of 

three areas surveyed) (Table 10). At each population, 30 thistle rosettes were selected, 

and one of three treatments was applied to each rosette: four field-collected T. horridus 

adults (two male, two female) were caged on one rosette, one rosette was caged with no 

T. horridus (caged control), or rosette was flagged and left open (uncaged control).  

Caging of the rosettes was performed by digging a four-cm deep trench around the rosette 

prior to placement of weevils, placing one nylon mesh bag (45 x 50 cm; Delnet® 

pollination bags) over the rosette immediately following application of weevils onto 
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Table 10. Site information for Carduus nutans and seven Cirsium species at 15 field 
populations (30 plants per population) used to study the effects of Trichosirocalus 
horridus on caged plants, 2009. 
 
  Thistle species1   County Duration2 
Carduus nutans* Roane            25 Feb – 29 May 
 Knox         20 March – 6 June 
Cirsium altissimum Polk          4 March – 5 September 
 Polk          8 March – 5 September 
C. arvense* Knox    25 February – 30 June 
 Anderson        13 March – 14 June 
C. carolinianum Bledsoe          7 March – 7 June 
 Cumberland        11 March – 6 June 
C. discolor Cumberland        11 March – 7 September 
 Cumberland        15 March – 7 September 
C. horridulum Bradley          3 March – 1 June 
 Bradley          8 March – 1 June 
C. muticum Morgan    15 February – 13 September 
C. vulgare* Knox    13 February – 10 August 
 Cumberland        17 March – 7 September   

 
1 – One population containing 30 plants of C. muticum was used during the study.  Two 
populations containing 30 plants each were used for all other species included in this 
study. Treatments (caging with adult T. horridus, caging without adult T. horridus, and 
uncaged control plants) were divided equally among the plants within each population. 
 
2 – Duration = the time period that treatments were applied to plants before they were 
taken to the laboratory for processing.   
 
* – Introduced species.



 

 92

rosettes, and burying the base of the bag in the trench to fully enclose the rosette.  

Weevils were left on the plants approximately four to six weeks, depending on the thistle 

species (when bolting occurs) and date of initial treatment.  As plant stems began to 

elongate past the height limitations of the cage, the base of the cages were removed from 

the ground, the apical meristems/buds/flowers of the mainstem of plants were enclosed in 

a 45 x 50 cm cage, and the opening of the bag was bunched together around the plant 

stem and tied with plastic flagging.  Plant populations were monitored every seven to 21 

days, and damage to basal meristems (i.e., meristem of rosette) and plant mortality, when 

applicable, were recorded.  During this population monitoring, cages also were adjusted 

as plants grew to allow for plant development. When a majority (ca. >50%) of the heads 

initiated flowering, plants were clipped at ground level, placed in a plastic bag, and taken 

to the laboratory for processing. Because all plants were bagged early in the year during 

the rosette stage, it was difficult to determine if bolting would occur.  Plants that 

remained rosettes throughout the study were left in the field, and damage to the meristem 

and plant mortality were recorded when applicable.  In the laboratory, the head width of 

each flowerhead and the height of each plant were measured, and the number of buds, 

flowers, and seedheads per plant and numbers of seeds per flowerhead were recorded for 

all species.  

Several variables were analyzed to estimate the response of plants to exposure to 

T. horridus. Chi-square analysis using the Fisher’s Exact test was performed for all thistle 

species to test for significant (P < 0.01) associations among treatments and damage to 

basal meristems, as well as associations among treatments and plant death, using SPSS 

14.0 (SPSS Inc., Chicago, Illinois). Because comparisons of treatments were performed 
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by species, multiple Chi-square tests were performed, which increased the likelihood of 

Type I (finding significance when there is none) errors.  Therefore, a conservative 

criterion alpha of P < 0.01 was used to decrease the likelihood of Type I errors. Average 

seed numbers per flower for plants caged with T. horridus and control plants, as well as 

head widths of flowerheads among treatments, was compared using least significant 

differences (P < 0.05), and data were normalized using rank transformation.  No analyses 

were performed for seed numbers or flowerhead widths of C. vulgare, because no flowers 

were present on these plants when collected from the field.  Due to an accidental lapse in 

monitoring activities for sites of C. vulgare, plants had either gone to seed, or remained 

rosettes throughout the study. Plants of C. vulgare are included in the following analyses, 

as the variables examined still could be measured for this species.  Average number of 

heads per plant, as well as the average plant height among treatments, were compared 

using least significant differences (P < 0.05), and data were normalized using log 

transformation. All mean separation analyses were performed using SAS 9.2 (SAS 

Institute, Cary, North Carolina). 

Results and Discussion 

 Damage to basal meristems was documented for each of the eight thistle species 

included in this study, but no treatment had a significant (P < 0.01) effect on levels of 

damage (Table 11).  Carduus nutans, Cirsium altissimum, and C. discolor exhibited 

damaged basal meristems in all three treatments, while C. carolinianum and C. vulgare 

exhibited damage in uncaged control plants and plants caged with T. horridus.  Plants of  
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Table 11. Chi-square1 analysis using Fisher’s Exact test to document associations 
among treatments and damage to basal meristems of Carduus nutans and seven 
Cirsium species during a study of Trichosirocalus horridus on caged plants, 2009. 
 
    Thistle species No. Plants with 

Damaged Meristems 
Fisher’s2 Probability 

 CC3 UC Th   
Carduus nutans* 3 11 8 7.101 0.039 
Cirsium altissimum 2 2 4 1.113 0.714 
C. arvense* 0 0 2 5.070 0.037 
C. carolinianum 0 3 3 3.550 0.232 
C. discolor 2 2 3 0.454 1.000 
C. horridulum 0 0 1 1.851 1.000 
C. muticum 0 0 4 6.876 0.025 
C. vulgare* 0 2 6 7.449 0.023 

 
1 – Criterion alpha of P < 0.01 was used to decrease likelihood of Type I errors. 
 
2 – Fisher’s Exact coefficient. 
 
3 – Treatments: CC – caged control, UC – uncaged control, Th – caged with T. horridus. 
 
* – Introduced species.   
 

 

 



 

 95

C. arvense, C. horridulum, and C. muticum only exhibited damage to basal meristems on 

plants caged with T. horridus.  While the levels of damage are similar within each 

Cirsium species, more damaged meristems of Carduus nutans were observed on plants 

caged with T. horridus and uncaged control plants than caged control plants. The higher 

(but not significant) level of damage to meristems of C. nutans is expected, as it is the 

target host of T. horridus.  

Damaged basal meristems of caged control plants of Carduus nutans, Cirsium 

altissimum, and C. discolor were probably due to the presence of eggs or larvae of 

herbivorous insects at the time of initial caging of the rosettes.  Although rosettes were 

inspected in an attempt to utilize only uninfested plants, the signs of oviposition or 

meristematic feeding were not detected on these rosettes during initial caging.  Damaged 

basal meristems observed in all treatments of Carduus nutans and in plants caged with T. 

horridus for all Cirsium species may be due to larval feeding of T. horridus.  However, 

native insects, such as weevil species in the genus Baris, feed on meristems of native 

plants (personal observation). Because there was no effect of treatment on the levels of 

damage, in combination with both native herbivores and adults of T. horridus possibly 

present at low levels (Chapter 3, Wiggins et al. 2009), damaged basal meristems of 

Cirsium species, especially uncaged control plants, could be due to feeding by either 

native insect herbivores or by T. horridus.  Insecticides have been used previously in 

studies of plant-feeding weevils to exclude unwanted herbivores from whole plants 

(Bevill et al. 1999) or specific plant parts (Cartwright and Kok 1985). In future studies, 

plants could be treated with a prophylactic treatment of insecticide prior to the study to 

decrease the likelihood of presence of unintended herbivores. 
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Chi-square analysis found no significant (P < 0.01) effect of treatments on levels 

of plant mortality during this study (Table 12). While plant death was observed at some 

level for most thistle species, no plant mortality was observed in populations of C. 

arvense or C. muticum.  Higher levels of plant mortality occurred in populations of C. 

altissimum and C. vulgare than other populations, but most of this mortality was 

observed on either caged control plants or plants caged with T. horridus.  Additionally, 

most of the plant mortality of these two species occurred in one of their two populations 

used in the study. Both sites where higher mortality occurred were located in open 

woodlands, and the combination of the conditions at these population sites and the caging 

of the plants may have restricted light or influenced other factors to levels that effected 

plant mortality. In general, thistles often grow in ruderal or disturbed habitats, and are 

exposed to a wide variety of stresses and herbivory. Although some plant death observed 

during this study may have been due to feeding by T. horridus, death in caged and 

uncaged control plants may be due to herbivores, either vertebrate or arthropod, weather 

damage, accidental physical damage from humans or animals, or other factors. 

Significantly (P < 0.05) fewer seeds were produced by uncaged control plants of 

Carduus nutans than plants of either caged treatment, with no other thistle species 

showing significant differences among treatments (Fig. 17).  Because T. horridus does 

not feed within the buds or flowers of plants, negative impacts on seed numbers are not 

expected to occur unless T. horridus infest rosettes in large numbers (ca. 40-50 

larvae/rosette) (Sieburth et al.1983, Milbrath and Nechols 2004a, b). The reduced 

numbers of seeds observed from uncaged control plants of C. nutans are probably due to 

feeding of R. conicus, which were present in these populations and readily feed within  
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Table 12. Chi-square1 analysis using Fisher’s Exact test to document associations 
among treatments and mortality of plants of Carduus nutans and five Cirsium 
species2 during a study of Trichosirocalus horridus on caged plants, 2009. 
 

Thistle species No. Dead Plants Fisher’s3 Probability 
 CC4 UC Th   
Carduus nutans* 0 1 0 1.851 1.000 
Cirsium altissimum 6 1 8 7.366 0.023 
C. carolinianum 2 0 4 4.239 0.156 
C. discolor 2 0 4 4.239 0.156 
C. horridulum 0 2 1 1.921 0.771 
C. vulgare* 7 3 4 4.410 0.134 

 
1 – Criterion alpha of P < 0.01 was used to decrease likelihood of Type I errors. 
 
2 – No Chi-square test was performed for Cirsium arvense or C. muticum, because no 
plant mortality was observed in these populations during the study. 
 
3 – Fisher’s Exact coefficient. 
 
4 – Treatments: CC – caged control, UC – uncaged control, Th – caged with T. horridus. 
 
* – Introduced species.   
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Figure 17. Average number of seeds per flower of each thistle species among plants 
caged with Trichosirocalus horridus and caged and uncaged control (no T. horridus) 
plants, 2009 (‘*’ denotes introduced thistle species). Columns with different letters 
within species denote significant (P < 0.05) differences. 
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the heads of these plants.  Future studies could include the treatment of uncaged control 

plants with insecticide prior to exposure to the herbivore of interest to decrease the 

presence of R. conicus and other herbivorous insects.   

When the effect of exposure to T. horridus on the head width of thistle 

flowerheads was examined, significantly (P < 0.05) greater flowerhead widths were 

observed on uncaged plants of Carduus nutans and Cirsium discolor compared to both 

caged control plants and plants caged with T. horridus, with no other species showing 

significant differences among treatments (Fig. 18).  As observed with seed numbers per 

flower, large numbers of larvae of T. horridus may be necessary to influence the size of 

flowerhead widths. Differences in uncaged flowerhead widths compared to caged plants 

observed from Carduus nutans and Cirsium discolor may be due to the cages deterring 

development of the heads to grow to their full potential.  

Significantly (P < 0.05) more heads (i.e., buds, flowers, and seedheads) were 

produced by uncaged control plants of C. altissimum and C. arvense and caged and 

uncaged control plants of C. discolor than plants caged with T. horridus (Fig. 19).  Also, 

significantly (P < 0.05) more heads were observed on uncaged plants of C. muticum than 

on caged control plants (Fig. 19). The number of heads per plant reflects the potential 

total seed production. Despite the lack of effect on seeds per flowerhead, lower numbers 

of heads on plants exposed to T. horridus observed in C. discolor may indicate the ability 

of T. horridus to reduce potential seed production for the whole plant (fewer heads, fewer 

total seeds produced). Both C. altissimum and C. arvense exhibited more heads from 

uncaged control plants than those caged with T. horridus, so caging the plants may have 

limited the ability to form as many heads as uncaged plants. 
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Figure 18. Average flowerhead width (mm) of each thistle species among plants 
caged with Trichosirocalus horridus and caged and uncaged control (no T. horridus) 
plants, 2009 (‘*’ denotes introduced thistle species). Columns with different letters 
within species denote significant (P < 0.05) differences. 
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Figure 19. Average number of heads (buds, flowers, and seedheads) per plant of 
each thistle species among plants caged with Trichosirocalus horridus and caged and 
uncaged control (no T. horridus) plants, 2009 (‘*’ denotes introduced thistle species). 
Columns with different letters within species denote significant (P < 0.05) 
differences. 
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When effect of exposure to T. horridus on the height of thistle plants was 

examined, uncaged control plants of Carduus nutans, Cirsium arvense, C. carolinianum, 

C. discolor, and C. muticum were significantly (P < 0.05) taller than caged control plants 

or plants caged with T. horridus (Fig. 20).  These differences between heights of caged 

and uncaged plants are probably due to a limiting effect of cages on apical growth.  

Although cages were periodically adjusted throughout the season, they may still have 

been restrictive enough to deter growth.  

To mitigate some of the potential cage effects for future studies, populations 

could be monitored more often, and cages adjusted more frequently, to better account for 

plant growth. Also, larger cages could be applied in the same manner as in this study (i.e., 

caging the terminal head of the plant in a larger bag-like cage), potentially allowing more 

room for plant development.  Finally, instead of applying cages to the terminal heads of 

the plant, cages could be constructed to enclose the whole plant.  Although these cages 

may be more difficult to construct and/or erect in the field, whole-plant cages may allow 

thistles to grow in a more natural manner.  

The overall lack of differences in levels of damage, levels of mortality, seed 

production and number of heads among treatments signifies that T. horridus does not 

have a noticeable effect on plants at the levels of exposure of this study.  Since larvae of 

T. horridus feed within developing meristems and not directly on the seeds or receptacle 

where seeds are formed, plants only may be weakened by feeding of T. horridus and less 

able to withstand future feeding within seedheads by R. conicus (in the case of C. nutans) 

(Kok 2001) or other seed feeders. Little reduction in seed numbers of C. nutans has been 

documented when rosettes were infested with low numbers of T. horridus larvae (<20 per 
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Figure 20. Average height (cm) per plant of each thistle species among plants caged 
with Trichosirocalus horridus and caged and uncaged control (no T. horridus) plants, 
2009 (‘*’ denotes introduced thistle species). Columns with different letters within 
species denote significant (P < 0.05) differences. 
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plant), and seed reduction was only accomplished with infestation levels >60 larvae per 

plant (Milbrath and Nechols 2004a, b). During this study, two mated females of T. 

horridus were exposed to each plant caged with weevils.  Because female T. horridus can 

lay an average of ca. 800 eggs (Kok 2001), it was believed that oviposition and larval 

development would occur at levels great enough to impact plants.  However, caging of 

these weevils may have affected the level of oviposition, through restriction of 

oviposition to one plant, or by physical factors, such as reduced light and air-flow, 

increased humidity, or other factors, and, thus, diminished larval numbers feeding on 

rosettes.   

Additionally, larval infestation rates were not evaluated during this study, as plant 

dissection and destruction are required to obtain larvae. Although damage to basal 

meristems of each thistle species was documented in plants caged with T. horridus, 

larvae were not present in meristems when plants were examined in the laboratory after 

collection from the field (Fig. 21). Larvae of T. horridus pupate in the soil in mid- to late-

May, and pupation lasts 14 to 25 days (Trumble and Kok 1979, Kok 2001).  Most of the 

plants in this study began bolting during this period, so when the base of the cages were 

removed from the soil and adjusted to enclose the bolting stem, any larvae that had 

developed in plants were pupating in the soil.  Therefore, it was difficult to ascertain the 

level of infestation, or if infestation had occurred, other than by observing damaged 

meristems.  Other studies of impacts of T. horridus on C. nutans obtained first-instar 

larvae, which were directly placed on the plant (Ward et al. 1974, Kok 1975, Cartwright 

and Kok 1985, and Milbrath and Nechols 2004a, b).   
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Figure 21. Stems (a) and damaged basal meristem (b) of Cirsium carolinianum caged 
with Trichosirocalus horridus. 
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In addition to application of prophylactic treatment of plants with insecticide to 

reduce unwanted feeding by other insect herbivores and the use of whole-plant cages to 

help mitigate cage effects, other modifications could be incorporated in future studies to 

provide more definitive results.  Greenhouse-grown plants or plants grown in field plots 

could be used for more control over unintended herbivores, and the uniform growth 

conditions of these plants would help mitigate unintended site effects observed in field 

populations.  Application of larvae of T. horridus directly to basal meristems would allow 

more accurate evaluation of impacts of larval feeding on plants, and varying levels of 

larvae could be applied to document threshold levels of larvae required to detrimentally 

impact plants.  In order to incorporate applications of larvae into future studies, either 

collections of larvae from infested plants in the field must be made, or colonies of T. 

horridus must be maintained.  Although either of these efforts would be both labor- and 

time-intensive, each would enhance the ability to determine plant responses to feeding of 

larvae of T. horridus.  Additionally, mesh screening could be installed around the base of 

plants to prevent larvae from burrowing in the soil to pupate. If monitored at regular 

intervals, larvae could be counted as they leave the plant to pupate, and larval survival 

rates could be calculated.  If larvae were allowed to enter the soil to pupate, the soil 

surrounding the base of the plant could be caged after the plant was clipped for 

processing and monitored for emergence of adult T. horridus from the soil. Documenting 

adult emergence would improve knowledge of the biology of T. horridus and help 

determine plant host suitability by allowing estimates of weevil survival throughout its 

lifecycle on specific hosts.  These modifications would enhance future studies and enable 

a greater understanding of the impacts of larval feeding of T. horridus on native thistles. 
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 The degree to which T. horridus may utilize these native Cirsium species in 

naturally-occurring populations remains unclear. The observation of some degree of 

damaged basal meristems of plants of all species caged with T. horridus implies that T. 

horridus has the ability to feed at some level on these thistle species.  However, the lack 

of differences in seeds per flowerhead and head numbers per plant observed in this study, 

combined with the low infestation levels observed on naturally-occurring populations of 

the five native Cirsium species in Tennessee (Chapter 3, Wiggins et al. 2009), indicate 

that T. horridus currently does not impact plants at significant levels. Levels of adults and 

larvae of T. horridus observed on C. discolor in Virginia (ca. 6%) (McAvoy et al. 1987) 

were similar to those observed more recently in Tennessee, but there have been no 

significant reductions in populations of C. discolor in Virginia attributed to feeding of T. 

horridus since that time.  Monitoring of native Cirsium species should be encouraged in 

natural areas to determine if T. horridus are present in those populations and, if so, their 

infestation levels. This monitoring would increase our understanding of interactions 

among T. horridus and native thistles, and provide an early warning system for 

management actions should they be required. 
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CHAPTER VI. SPATIAL PREDICTION OF HABITAT OVERLAP 
OF INTRODUCED AND NATIVE THISTLES TO IDENTIFY 

POTENTIAL AREAS OF NON-TARGET ACTIVITY OF 
BIOLOGICAL CONTROL AGENTS 

Introduction  

 Biological control has received increased scrutiny in recent years, largely because 

of documentation of non-target feeding of biological control agents on native species 

(e.g., Clarke et al. 1984, Simberloff and Stiling 1996, Ewel et al. 1999, Follet and Duan 

2000, Pemberton 2000, Louda and Stiling 2004). An important factor in considering 

interactions among introduced biological control agents, their target hosts, and potential 

native hosts is the degree to which habitats of introduced pests and related native species 

overlap (Barratt et al. 2000).  Additionally, herbivorous insects introduced to control 

exotic, invasive weed species may pose a substantial threat to native plant species that are 

taxonomically related to the target weed species and may share similar habitats 

(Pemberton 2000). The importance of these spatial and taxonomic factors in non-target 

activity is evident in the case of the introduced weed musk thistle, Carduus nutans L., 

and native thistles in the genus Cirsium in North America. 

 Musk thistle, a biennial herbaceous species native to Europe, was first introduced 

into North America in the mid-1800s and was considered a major plant pest across much 

of the U.S. by the1960s (Stuckey and Forsyth 1971, Dunn 1976).  Two weevil species 

[Rhinocyllus conicus Fröelich and Trichosirocalus horridus (Panzer)] native to Europe 

were approved for release in the U.S. and Canada as biological control agents of musk 

thistle in the late 1960s and early 1970s (Kok 1975, 2001).  Prior to these releases, non-

target testing was conducted on species of European thistles in the genera Cirsium, 
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Carduus, Silybum, and Onopordum, but few species native to North America were 

included (Rees 1977, Zwölfer and Harris 1984). 

 Prior to its release in North America, host specificity testing revealed that R. 

conicus fed on several European species of Cirsium (Zwölfer and Harris 1984).  In the 

years following its release R. conicus has been documented from flowerheads of at least 

25 native species of Cirsium in the western and central U.S. (Goeden and Ricker 1986, 

Goeden and Ricker 1987, Turner et al. 1987, Rees 1992, Turner and Herr 1996, Louda et 

al. 1997, Pemberton 2000, Sauer and Bradley 2008).  Non-target feeding of R. conicus on 

the Federally Endangered species Cirsium fontinale (Greene) Jepson var obispoense J. T. 

Howell has been documented (Turner and Herr 1996, USDA 2009) and, due to its 

increasing host-range expansion to Cirsium species native to North America, R. conicus 

may begin to use other species listed as Federally Rare, Threatened or Endangered 

(RTE), such as Pitcher’s thistle, C. pitcheri (Torrey) Torrey and Gray (Pavlovic et al. 

1992, Louda 1998).  Whereas documented non-target activity of T. horridus has not been 

as extensive as that of R. conicus, Takahashi et al. (2009) observed rosettes of tall thistle,  

C. altissimum (L.) Sprengel, infested by T. horridus at similar frequencies and 

abundances as bull thistle, C. vulgare (Savi) Tenore, in Nebraska.  McAvoy et al. (1987) 

reported limited feeding by T. horridus on field thistle, C. discolor (Muhlenberg ex 

Willdenow) Sprengel, in Virginia. 

 Rhinocyllus conicus and T. horridus were released throughout Tennessee from 

1989 through the 1990s, and both weevils have subsequently become established in much 

of the state (Lambdin and Grant 1992, Grant and Lambdin 1993, Lambdin and Grant 

1996). Currently, seven Cirsium species occur in Tennessee: five native species [Cirsium  
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altissimum, soft thistle, C. carolinianum  (Walter)  Fernald & Schubert, C. discolor, 

yellow thistle, C. horridulum Michaux, and swamp thistle, C. muticum Michaux] and two 

introduced species [Canada thistle, C. arvense (L.) Scopoli, and C. vulgare].  Adult T. 

horridus recently have been documented in low numbers on all native thistle species in 

Tennessee (Wiggins et al. 2009) but there have been no published reports of non-target 

feeding of R. conicus on native thistles in this region. Therefore, the impact of the 

released weevils on non-target thistle species in Tennessee is poorly known.   

Although the proximity of native thistles to populations of musk thistle varies 

where non-target impacts have been observed, Rand et al. (2004) documented greater 

non-target infestation of the native C. undulatum (Nuttall) Sprengel by R. conicus within 

stands of Carduus nutans than on native plants 30 to 100 m from stands.  Additionally, 

egg densities of R. conicus on C. undulatum and C. flodmanii (Rydberg) Arthur (also 

native) were four times greater in landscapes heavily infested with Carduus nutans than 

in landscapes with low densities of the exotic thistle (Rand and Louda 2004).  These 

studies show that proximity of C. nutans to native thistles can influence non-target 

feeding on both local and landscape scales. 

Modeling the habitats in which native and exotic thistles occur could be a useful 

technique to identify areas where potential non-target feeding of R. conicus and T. 

horridus may occur.  Habitat modeling can provide unbiased predictions of species 

occurrences and distribution across a large spatial area (Boetsch et al. 2003).  Although it 

has been used extensively to study indigenous and introduced vertebrate species (Scott et 

al. 2002), habitat modeling is increasingly used in association with invasive plant species 

(Nielsen et al. 2008, Williams et al. 2008, Ibanez et al. 2009).  Because thistles in the 
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genera Carduus and Cirsium are known to be necessary for the reproduction of R. 

conicus and T. horridus, characterizing suitable habitats for the known and potential plant 

hosts of these weevils would also identify habitats where these weevils may occur. 

 In Spring 2005, a study was initiated to characterize habitats where native and 

exotic thistles occur and to identify areas where these thistle species may overlap.  The 

objectives of this study were to: 1) predict habitat areas of native and exotic thistles, 2) 

quantify associations of R. conicus and T. horridus with introduced and native thistle 

species, and 3) identify areas where native and non-native thistle species overlap.  This 

project was designed to predict where habitats of native and non-native thistle species 

may overlap and, thus where non-target feeding by the two introduced weevils may 

occur.  

Materials and Methods 

Study Area 

Four counties (Bledsoe, Cumberland, Morgan, and Van Buren; ca. 4,812 km2) in 

eastern Tennessee were selected to develop site suitability indices and predict potential 

thistle habitats (Fig. 22).  This four-county area is mostly forested (69.3% of the total 

area), but also has a range of land cover types (i.e., 12.8% pasture, 8.2% grassland, 6.1% 

developed, 1.9% scrub or barren, and 1.0% crop land) in which thistle species may occur. 

This study area was selected because the four thistle species chosen as model species 

[two introduced (Carduus nutans and Cirsium vulgare) and two native (C. carolinianum, 

C.  discolor)] occur throughout these counties based on specimen records from the 

University of Tennessee Herbarium (TENN). 
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Figure 22. Map of study area in Tennessee (Bledsoe, Cumberland, Morgan, and Van 
Buren Counties), USA, used to generate Mahalanobis distance models of thistle 
habitat. 
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During Spring and Summer 2005 through 2007, site reconnaissance was 

conducted to locate populations of the four thistle species in the study area. Thistle 

populations were detected visually, and plant identification was confirmed using Wofford 

(1989) and based on comparisons of field-collected plants with thistle specimens in 

TENN.  Populations of each thistle species (42 of Carduus nutans, 35 of Cirsium 

carolinianum, 76 of C. discolor, and 39 of C. vulgare) were georeferenced using a 

Trimble® GeoExplorer CE GPS unit (Trimble Navigation Limited, Sunnyvale, 

California) and entered into a GIS database in (ArcMap® version 9.2.1, ESRI, Redlands, 

California).   

Habitat Attributes 

Predicting species occurrence requires knowledge of the resource conditions that 

contribute to use of a habitat by a particular species.  The habitat attributes selected for 

the model represent the basic physiographic, soil quality/chemistry, light, and moisture 

requirements that contribute to thistle growth.  Eight habitat attributes were used to 

generate habitat models for each thistle species (Table 13). Digital elevation models (30-

m pixels) were obtained from the U.S. Geological Survey (USGS 2009).  Slope was 

calculated from the digital elevation model (Boetsch et al. 2003, Thompson et al. 2006). 

Two unitless indices were used as habitat attributes. The topographic relative moisture 

index (TRMI) is a measure of potential soil moisture, and the solar insolation index is an 

estimate of solar radiation potential that takes topography into account.  The Soil Data 

Viewer was used to extract soil data from the Soil Survey Geographic database (NRCS 

2009; Table 13). The specific soils data (i.e., percent clay, percent organic matter, percent 

sand and pH) were selected because they are general indicators of soil quality.  To  
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Table 13. Spatial data used to generate attributes used in Mahalanobis distance (D2) 
models to predict occurrence of Carduus nutans, Cirsium carolinianum, C. discolor, 
and C. vulgare in Bledsoe, Cumberland, Morgan, and Van Buren Counties, 
Tennessee, 2005-2009. 

1 – Elevation data were accessed 29 March 2006. Soils data for Bledsoe, Cumberland and 
Morgan Counties were accessed 8 November 2006.  Soils data for Van Buren County were 
accessed 14 June 2007.  
 
2 – All soils data were converted from vector data to 30 x 30 m raster grid data.

Attribute1 Description Value range Source 

Elevation Elevation (m) 215-1,018 U.S. Geological Survey 
30-m resolution digital 
elevation model (USGS 
2009) 

Slope Slope (degrees) 0-67.4 Calculated from Elevation 

Soils Data2: 

       – % Clay 

 

Percent of clay in soils 

 

0-43.3 

 

National Resources 
Conservation Service Soil 
Survey Geographic 
Database (1:20,000) 
(NRCS 2009) 

– % Organic Percent of organic matter in 
soils 

0-3.0 National Resources 
Conservation Service Soil 
Survey Geographic 
Database (1:20,000) 
(NRCS 2009) 

– % Sand Percent of sand in soils 0-68.7 National Resources 
Conservation Service Soil 
Survey Geographic 
Database (1:20,000) 
(NRCS 2009) 

      – pH Soil acidity 4.6-7.0 National Resources 
Conservation Service Soil 
Survey Geographic 
Database (1:20,000) 
(NRCS 2009) 

Solar insolation Unitless index of exposure to 
sunlight; approximated for 
the solar equinox  

1-227 Calculated after Thompson 
et al. (2006) 

Topographic relative 
moisture index 

Unitless index of moisture 
considering the effects of 
slope position, aspect, and 
elevation 

0-60 Calculated after Boetsch et 
al. (2003) 
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correspond to the raster data, soils data were converted from vector to raster data with a 

pixel size of 30 m.  The mean and standard deviation were calculated for each of the eight 

model attributes for each thistle species to document the relative contribution of each 

attribute to the model.   

Predicting Habitats 

Mahalanobis distance (D2) was used as the method to characterize plant habitats 

and predict species occurrence.  Mahalanobis distance is a multivariate measure of 

dissimilarity and uses the mean, variance, and covariance of habitat characteristics 

associated with the sample locations (Mahalanobis 1936, Clark et al. 1993, van Manen et 

al. 2002):   

D2 = (x - û)’ Σ -1 (x - û) 

where x is the vector of the habitat characteristics based on the GIS data layers of 

the 8 habitat variables, û is the mean vector of habitat characteristics of the 

sample sites, and Σ -1 is the inverse variance-covariance matrix calculated from 

the sampling sites.   

Mahalanobis distance is the standard squared distance between a set of sample variates,  

x, and “ideal” habitats defined by the sampling sites and represented by û.  Low D2 values 

indicate conditions that are most similar to those of the sampling sites (i.e., observed 

locations), and D2 values increase with greater dissimilarity.  Conventional habitat 

modeling techniques, such as logistic regression, discriminant function analysis, or 

classification tree analysis, require one dataset that describes habitat suitability and a 

corresponding dataset that reflects unsuitable sites where the species does not occur 

(Boetsch et al. 2003).  Mahalanobis distance was selected for use in this study because, 
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unlike those other techniques, it requires only presence data. Despite the widespread 

distribution of Carduus nutans, Cirsium discolor, and C. vulgare, C. carolinianum is not 

as ubiquitous or easily detected.  Using D2 analysis to predict habitats eliminates the need 

to survey sites where thistle species do not occur.  Additional advantages of this 

technique are that correlations among habitat variables are accounted for and multivariate 

normality is only required to rescale Mahalanobis distance to a probability distribution 

(Clark et al. 1993, van Manen et al. 2005).  In addition to predicting wildlife habitats (i.e., 

Clark et al. 1993, Knick and Rotenberry 1998, Browning et al. 2005, Rotenberry et al. 

2006, Wartrous et al. 2006, Thatcher et al. 2006), Mahalanobis distance has been used in 

plant-related systems throughout the world, including predicting distributions of plant 

communities (DeVries 2005), enhancing plant conservation and restoration efforts 

(Boetsch et al. 2003, van Manen et al. 2005, Thompson et al. 2006), and identifying areas 

vulnerable to the spread of invasive weeds (Rouget et al. 2004). This technique is not 

believed to have been used previously to identify potential habitat overlap of target and 

non-target species of introduced biological control agents.     

Calculations of û and Σ -1 were conducted in SAS (Version 9.2, SAS Institute, 

Cary, North Carolina) to develop the habitat models using the habitat characteristics of 

192 populations of the four thistle species based on the eight habitat attributes. These 

values were used to calculate D2 values for each pixel in the study area using Arc/Info 

GRID® (ESRI, Redlands, California).   

Cumulative frequency graphs were generated for each thistle species to delineate 

habitat from non-habitat areas by comparing the D2 values of the observed localities 

against D2 values if populations were randomly distributed (null model, n = 366).  The D2 
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values for the thistle and null model localities of each thistle species were extracted from 

the respective habitat models based on Mahalanobis distance and the percent cumulative 

frequency of each locality was graphed against the corresponding D2 value.  Increasing 

difference between the two cumulative frequency curves indicates a greater ability of the 

model to identify habitat areas different from those available within the study area.  The 

greatest difference between the observed and null model curves is the threshold D2 value 

below which the greatest percentage of plant locations occurs within the smallest 

percentage of the study area, thus providing a meaningful measure to delineate habitat 

(Pereira and Itami 1991, van Manen et al. 2005).  Accordingly, areas with D2 values 

below the threshold value were delineated as habitat areas for each species and areas 

above the threshold value were not considered habitat (van Manen et al. 2005, Thatcher 

et al. 2006).   

Model Testing  

The models were tested using an independent set of 200 test locations to 

determine the association between D2 values and the presence of thistle species in 

predicted habitats. To insure sufficient observations across the range of D2 values, 50 

sites were stratified for each thistle species according to the distribution of D2 values 

within the study area (van Manen et al. 2002, 2005, Boetsch et al. 2003):  

100 (percent of all pixels) = n + 2n + 4n + 8n + 16n 

where n is a constant percentage of the pixels sampled within a stratum (i.e., 

area).   

This geometric equation doubles the area of each of five successive strata, with the first 

strata containing n (3.23%) pixels with the lowest range of D2 values.  Each successive 
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stratum includes twice the area from which to sample (i.e., stratum 2 contained 6.46% of 

the pixels with the next lowest range of D2 values, stratum 3 contained 12.92% of the 

pixels and so on).  For each species, coordinates for ten survey sites were generated for 

each of the five strata (i.e., 50 test sites per species; 200 test sites total).  Although 50 test 

sites were generated specifically for each thistle species, D2 values were calculated for all 

thistle species for all 200 sites.  Thus, stratified sampling was conducted for 50 sites per 

thistle species, and the remaining 150 sites contained random levels of D2 values.   

The 200 sites were surveyed for the presence of each thistle species during May 

and June 2009.  The four thistle species grow in open habitats (Wofford 1989, Carman 

2001, Weakley 2008). Therefore, land-cover types from the 2001 National Land Cover 

Data (i.e., development, barren, shrub, grassland, pasture, crops) were combined to 

delineate open land cover types (USGS 2009).  This open type was used as a filter to 

restrict surveys of predicted habitats to non-forested sites (Thompson et al. 2006).  

Survey sites were located using a Garmin® GPS map 60CSx WAAS-enabled GPS unit 

(Garmin International, Olathe, Kansas).  Although predictions were made for 30- x 30-m 

pixels, a larger survey area was used to account for potential effects of GPS and GIS 

errors.  At each test site, a 50- x 50-m area centered on the sampling position was 

surveyed to determine the presence or absence of each thistle species.  

Data Analysis 

Count regression (Proc Countreg, SAS 9.2, SAS Institute, Cary, North Carolina) 

was used to test if D2 values were associated with the number of plants observed in the 

200 test sites. Because of the possibility of zero-inflation (large number of zeros) and 

overdispersion (variance exceeding the mean) relative to the Poisson distribution, all 
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dependent variables were first fit with zero-inflated, negative binomial models (Erdman 

et al. 2008).  These models were then tested for zero-inflation and the presence of 

overdispersion.  For thistle species that showed a significant association between the 

number of thistle plants and D2 values, predictive habitat maps were generated in 

ArcMap® to determine areas where habitat overlap occurred.   

Chi-square analysis was used to test the association between the presence of each 

thistle species in predicted habitats and the occurrence of both introduced weevil species. 

The presence of each thistle species at the 200 field-test sites was compared with the 

presence of R. conicus and T. horridus in SPSS 14.0 (SPSS Inc., Chicago, Illinois). 

Results and Discussion 

Mahalanobis Distance Model 

Analyses using the D2 statistic predicted habitats for all four thistle species.  The 

mean D2 values ranged from a low of 196.13 for Carduus nutans to 451.90 for C. 

carolinianum, and the greatest range of D2 values was observed for C. carolinianum 

(Table 14).  Mahalanobis distance compares the dissimilarity of every cell in the 

combined spatial dataset to the ideal set of characteristics derived from observed data 

(i.e., initial 192 model sites), so increasing D2 values denote less suitable conditions. 

Cumulative frequency graphs indicated that Mahalanobis distance models for 

each species effectively identified site conditions that contribute to the presence of the 

respective species and designated threshold D2 values of all four thistle species (Table 14, 

Figs. 23 [native thistle species] and 24 [introduced thistle species]). For example, at a 

threshold D2 value of 11.66, 94.29% of the 35 observed populations of Cirsium 
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Table 14. Mahalanobis distance (D2) value ranges and means (+ standard deviation), classification rate, and cumulative 
frequency of habitat models to determine habitat of native and introduced thistle species, Bledsoe, Cumberland, Morgan, 
and Van Buren Counties, Tennessee, 2005-2009.  

 

 

 

 

 

 

 

1 – D2 value which delineates lesser values as habitat and greater values as non-habitat (habitat D2 < threshold D2 < non-habitat D2). 

2 – Percent of observed sites that were correctly classified as habitat (number of locations classified as habitat/total locations). 

3 – Percent of random sites that were correctly classified as habitat (number of locations classified as habitat/total locations). 

* – Introduced species. 

Thistle species D2 range D2  (Mean + SD) Threshold D2 1 % observed 
classified as habitat2 

% random classified 
as habitat3 

Carduus nutans* 0.26–601.97 196.13+147.14 11.90 92.86 (39/42) 72.95 (267/366) 

Cirsium carolinianum 1.06–1,710.20 451.90+352.63 11.66 94.29 (33/35) 37.43 (137/366) 

Cirsium discolor 0.27–877.30 206.51+134.55 18.35 98.68 (75/76) 74.86 (274/366) 

Cirsium vulgare* 0.65–1,441.09 435.79+346.56 9.90 76.92 (30/39) 43.99 (161/366) 
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Figure 23. Cumulative frequencies of D2 values for A) Cirsium carolinianum (n = 35 
sites) and B) Cirsium discolor (n = 76 sites) and 366 null model locations in Bledsoe, 
Cumberland, Morgan, and Van Buren Counties, Tennessee, 2005-2009. Vertical 
lines indicate D2 threshold values (greatest differences between cumulative 
frequency for thistle locations and null model locations).
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Figure 24. Cumulative frequencies of D2 values for A) Cirsium vulgare (n = 39 sites) 
and B) Carduus nutans (n = 42 sites) and 366 null model locations in Bledsoe, 
Cumberland, Morgan, and Van Buren Counties, Tennessee, 2005-2009. Vertical 
lines indicate D2 threshold values (greatest differences between cumulative 
frequency for thistle locations and null model locations). 
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carolinianum were classified as habitats (Table 14, Fig. 23A).  At that same D2 value, 

only 37.43% of the 366 randomly distributed locations were classified as habitats. The 

difference in the number of locations classified as habitats between the observed and 

random data sets demonstrates that the model predicts the occurrence of each thistle 

species in its corresponding habitat at a greater level than what would randomly be 

observed. 

In general, habitat models indicate that thistle habitats within the study area are 

primarily represented in areas of relatively high solar insolation at low-middle elevations, 

with gentle slopes and slightly acidic soils containing ca. 25% clay, ca. 35% sand, and ca. 

0.75% organic matter (Table 15). For all thistle species, pH and solar insolation were 

highly influential attributes for habitats, as their standard deviations were relatively low 

(< 25% of the mean). Elevation and percent clay were highly influential attributes for all 

three Cirsium species, but were less influential for habitats of Carduus nutans.  Percent 

sand and TRMI were influential habitat attributes for all thistle species, and percent 

organic matter and slope had the weakest influence on thistle habitats (Table 15). 

Model Testing 

The presence of thistles in field-test sites ranged from seven sites where C. 

carolinianum was present to 67 sites where C. discolor was present (Table 16).  Whereas 

the zero-inflated model was not required for the four thistle species, overdispersion was 

observed in the data for Cirsium discolor and C. vulgare, and the negative binomial 

model was used.  Poisson regression was sufficient for C. carolinianum and Carduus 

nutans, as neither zero-inflation nor overdispersion was a factor for these species. Poisson 

regression showed that plant counts at field-test sites increased with decreasing values of 
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Table 15. Comparison of each of the eight attributes used to generate the spatial models predicting habitats of Carduus 
nutans, Cirsium carolinianum, C. discolor and C. vulgare, Bledsoe, Cumberland, Morgan, and Van Buren Counties, 
Tennessee, 2005-2009 (see Table 13 for description of each attribute). 

 

 

 

 

 

 

 

1 – Solar insolation index (unitless).  

2 – Topographic relative moisture index (unitless). 

* – Introduced species. 

Attributes (Mean + Standard Deviation) Thistle species 

Elevation  
(m) 

Slope 
(degrees) 

% clay % organic % sand pH Solar1 TRMI2 

Carduus nutans* 417.33+128.33 5.86+6.13 25.74+6.71 0.76+0.48 38.03+10.55 5.02+0.44 176.60+12.48   30.07+8.84 

Cirsium carolinianum 495.20+56.92 5.16+4.30 25.32+4.60 0.76+0.37 31.82+11.69 4.79+0.25 173.29+10.64   29.77+9.561

Cirsium discolor 444.74+105.03 4.84+4.07 25.31+5.95 0.76+0.39  39.15+9.27 4.94+0.35 174.61+10.04   30.49+9.961

Cirsium vulgare* 485.67+95.44 5.33+4.57 25.37+4.67 0.71+0.34 38.56+8.381 4.82+0.28 174.95+11.16   29.54+10.40
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Table 16. Count regression analysis to determine the association between Mahalanobis distance (D2) values and occurrence 
and frequency of plants of Carduus nutans, Cirsium carolinianum (Poisson regression1), C. discolor and C. vulgare (negative 
binomial regression2) at 200 field-test sites, Bledsoe, Cumberland, Morgan, and Van Buren Counties, Tennessee, 2005-2009. 

 
 

 

 

 

 

 

 

 
1 – Poisson regression was used for data that fit the Poisson distribution and did not exhibit overdispersion.  

2 – Negative binomial regression was used for data that fit the Poisson distribution and exhibited overdispersion. 

* – Introduced species. 

Thistle Species Frequency of 
Presence/ 
Absence 

Variable Parameter 
Estimate 

Standard 
Error 

   t Value Pr > |t| 

Intercept 1.0040 0.0791 12.6800 <0.0001 Carduus nutans* 46/154 
D2 -0.0427 0.0139 -3.0700 0.0022 

Intercept 0.7154 0.3852 1.8600 0.0633 Cirsium carolinianum 7/193 
D2 -0.5778 0.1334 -4.3300 <0.0001 

Intercept 0.6916 0.2780 2.4900 0.0129 C. discolor 67/133 
D2 0.0027 0.0348 0.0800 0.9382 

Intercept 0.4289 0.3318 1.2900 0.1961 C. vulgare* 45/155 
D2 -0.0033 0.0309 -0.1100 0.9156 
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D2 for Carduus nutans (-0.0427, P = 0.0022) and Cirsium carolinianum (-0.5778, P < 

0.0001; Table 16).  Negative binomial regression showed no association (P < 0.05) 

between D2 values and plant counts for C. discolor or C. vulgare (Table 16).  The lack of 

significance of C. discolor and C. vulgare in field-test sites may be due to the wider range 

of D2 values at test sites where these species were present.  Although C. carolinianum 

was found in the fewest sites, all those sites had relatively low D2 values (1.57–4.76; all 

below the threshold value identified by cumulative frequency analysis).  Conversely, D2 

values for test sites where C. discolor and C. vulgare were recorded ranged from 1.98–

19.56 (two sites were greater than the cumulative frequency threshold value of 18.35) and 

1.13–29.82 (six sites were greater than the cumulative frequency threshold value of 9.90), 

respectively.  In previous studies (Boetsch et al. 2003, van Manen et al. 2005), a narrow 

range of habitats was identified for the model plant species.  Because C. discolor and C. 

vulgare are both ruderal species, the habitat models reflect the generalist nature of these 

two species.   

 These spatial analyses were conducted using raster data with a pixel size of 30 m, 

but different resolution data perhaps would have yielded different results.  Several 

factors, such as the size of the study area, the biology of the species studied, data 

availability, etc., must be considered when determining the most appropriate resolution 

for a study using spatial data.  For this study the highest resolution data available for the 

study area were used, because thistle populations are localized in relatively small areas 

throughout a landscape and 30-m pixel data were appropriate for the size of the study 

area. Higher resolution data (i.e., 10-m pixel size) may have enabled greater delineation 

of habitats, as smaller pixels provide more precise data.  Conversely, lower resolution 
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data (i.e., 100-m pixel size) may have lessened the ability of the model to identify 

habitats. As pixel size increases, the data associated with each pixel must be averaged 

over a larger area.  Future studies could be conducted using spatial data across a range of 

resolutions to test the specific impacts of data resolution on habitat prediction. 

Chi-square tests showed associations between both weevil species and sites where 

C. vulgare and Carduus nutans were found (Table 17).   For example, both C. nutans and 

R. conicus were predicted to be present at 4.8 sites, but these two species were actually 

present at 21 sites (Table 17).  Thus, the presence of either introduced thistle species in an 

area increases the probability of the introduced weevil species occurring there as well, 

reflecting previously reported associations among these species (Surles et al. 1974, Ward 

et al. 1974, Surles and Kok 1976, Frick 1978, Zwölfer and Harris 1984).   Whereas both 

weevil species were recorded from sites where introduced and native species were 

documented to co-occur, no significant associations were observed between either weevil 

species or either native thistle species (Table 17).  This lack of association is expected, as 

no non-target activity of R. conicus was documented for either native thistle species, and 

only low levels of T. horridus have been observed on each species (McAvoy et al. 1987, 

Wiggins et al. 2009).  

The significance of the D2 model to predict habitats for C. nutans and Cirsium 

carolinianum justified generating maps of habitats of both thistle species using the 

threshold value determined by their respective cumulative frequency graphs (Table 14).  

No habitat maps were generated for C. discolor or C. vulgare, as the D2 models were not 

predictive of the test data.  Approximately 12% overlap of Carduus nutans and Cirsium 

carolinianum habitat was observed and non-target feeding of introduced weevils on
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Table 17. Chi-square1 tests for associations between the presence of each thistle species with the presence of each weevil 
species at each of 200 field-test sites of the Mahalanobis distance (D2) habitat models, Bledsoe, Cumberland, Morgan, and 
Van Buren Counties, Tennessee, 2005-2009. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
1 – Criterion alpha of P < 0.01 was used to decrease likelihood of Type I errors. 

 

* – Introduced species.

Thistle Species Weevil species Pearson 
Chi-square 

df Asymptotic 
Significance 

No. Observed/ 
Predicted 

Rhinocyllus conicus 78.552 1 <0.001 21.0/4.8 Carduus nutans* 
Trichosirocalus horridus 20.051 1 <0.001 13.0/4.8 

R. conicus 0.111 1 0.739 1.0/0.7 Cirsium carolinianum 
T. horridus 0.851 1 0.356 0.0/0.7 

R. conicus 0.175 1 0.675 8.0/7.1 C. discolor 
T. horridus 0.005 1 0.946 7.0/7.1 

R. conicus 5.861 1 0.015 15.0/9.8 C. vulgare* 
T. horridus 14.504 1 <0.001 18.0/9.8 
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C. carolinianum may be most likely to occur there (Fig. 25).  The presence of Carduus 

nutans was an important predictor of the occurrence of both weevil species (Table 17).  

Thus, the co-occurrence of C. nutans with Cirsium carolinianum increases the likelihood 

that the introduced weevils will be in close proximity to the native thistle, thus increasing 

the opportunity for non-target activity.  Although the predictive model for C. vulgare was 

not significant, this thistle species was also a significant predictor of weevil occurrence so 

the distribution of C. vulgare populations also could be a contributing factor to non-target 

activity.  

Whereas surveys of naturally-occurring populations of C. carolinianum in eastern 

Tennessee have yielded no observations of non-target feeding by R. conicus, caged-plant 

studies have documented oviposition, larval development, and adult emergence of R. 

conicus from buds and flowerheads of C. carolinianum (Wiggins 2009).  Additionally, 

low numbers (2 weevils from 240 plants) of adult T. horridus have been documented on 

C. carolinianum in eastern Tennessee (Wiggins et al. 2009).  Therefore, the potential 

exists for both weevil species to use C. carolinianum as a reproductive host.   

This study may be the first to use Mahalanobis distance, in conjunction with the 

close associations known to occur between invasive weeds and insects introduced to 

control them, to predict where feeding may occur on native host plants.  Protocols 

developed during this research may have important implications for future research of 

introduced and native species.  On a general scale, these protocols could be modified to 

evaluate spatial associations among introduced and native species.  More specifically, 

future host-testing efforts for potential biological control agents could incorporate plant  
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Figure 25. Habitat overlap of Carduus nutans and Cirsium carolinianum based on 
predictions from Mahalanobis distance models, Bledsoe, Cumberland, Morgan, and 
Van Buren Counties, Tennessee, 2005-2009. Non-habitat areas include forested 
areas and areas predicted as non-habitat by the model. 
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location data from herbaria or natural resource agencies to identify potential areas of 

habitat overlap, thus providing a type of spatial risk assessment of non-target feeding.   

Results from this research also may have current management implications for 

areas where conservation of native Cirsium species is a concern. The well-documented 

non-target feeding of R. conicus in other areas of the U.S., in combination with the recent 

documentation of T. horridus occurring on the native thistle species C. altissimum, C. 

carolinianum, C. horridulum, and C. muticum (Takahashi et al. 2009, Wiggins et al. 

2009), underscore the importance of detection and monitoring of native thistle 

populations, especially those listed as RTE species, for future conservation. Although no 

Cirsium species that occur in Tennessee are state or Federally listed, C. carolinianum is 

state listed as rare in Indiana and threatened in Ohio (USDA 2009).  Land managers in 

these states could modify these spatial modeling protocols to identify suitable habitats for 

C. carolinianum and other native thistles to locate new populations and to monitor 

populations in areas where non-target feeding may be most likely.  Monitoring efforts in 

those habitats could provide early detection of non-target activity of R. conicus or T. 

horridus and enable managers to make appropriate decisions regarding conservation of 

these native plants.  
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 CHAPTER VII. CONCLUSIONS 
 
 Since its introduction from Europe in the mid-1800s, musk thistle, Carduus 

nutans L., has become a prominent weed species in North America.  Because of its 

widespread distribution across most of North America, coupled with the time and 

expense associated with management of infested areas through chemical, mechanical, or 

other controls, biological control (i.e., the use of natural enemies to suppress pest 

populations) was promoted as an effective, sustainable management technique.  In the 

late-1960s, a biological control program that included two European weevils, Rhinocyllus 

conicus Fröelich and Trichosirocalus horridus (Panzer), was initiated in the U.S. and 

Canada.  Due to their complementary biologies, with larvae of R. conicus feeding within 

flowerheads and larvae of T. horridus feeding within meristems of rosettes, these weevils 

were credited with reducing population densities of musk thistle in many areas of release.   

 Feeding of R. conicus, and to a lesser extent T. horridus, on non-target native host 

plants in the genus Cirsium has prompted criticism of these biological control agents and 

raised concern over their effects on populations of native thistles.  Across much of the 

central and western U.S., R. conicus has been documented feeding on at least 25 species 

of native thistles in the genus Cirsium.  While the impacts on most thistle species by this 

feeding are unclear, significant reductions in seed numbers in C. canescens Nuttall 

generate concern that populations of this thistle species may begin to decline.  Prior to 

this project, T. horridus had only been recorded as feeding on field thistle, C. discolor 

(Muhlenberg ex Willdenow) Sprengel.  Because few records of non-target feeding of T. 

horridus exist, the impact this weevil may have on native thistle populations is uncertain. 
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 No non-target feeding of either weevil species had been documented in Tennessee 

at the initiation of this study.  However, five native [tall thistle, Cirsium altissimum (L.) 

Sprengel, soft thistle, C. carolinianum (Walter) Fernald & Schubert, C. discolor, yellow 

thistle, C. horridulum Michaux, and swamp thistle, C. muticum Michaux] and two 

introduced [Canada thistle C. arvense (L.) Scopoli, and bull thistle, C. vulgare (Savi) 

Tenore] Cirsium species are known to occur here.  Because few studies have been 

conducted on these thistle species in Tennessee, little is known of the potential 

interactions of R. conicus or T. horridus with these species. Therefore, a project was 

begun to 1) assess the synchrony of phenologies of the three exotic and five native 

thistles in Tennessee with the phenologies of R. conicus and T. horridus, 2) document the 

incidence of the introduced weevils in natural populations of these eight thistle species, 3) 

quantify the impacts on plant reproduction or growth responses of each thistle species 

due to feeding of R. conicus and T. horridus, and 4) predict the occurrence of two native 

(C. carolinianum and C. discolor) and two exotic (C. vulgare and Carduus nutans) thistle 

species (model species) and identify potential habitats across a study area for these thistle 

species using spatial analysis. 

Phenological synchrony is important when evaluating potential non-target hosts 

of herbivores introduced as biological control agents of weeds, as plant species with 

phenologies concurrent with the herbivores are most suited to become hosts. The 

phenologies of musk thistle and seven Cirsium thistles were estimated based on 

University of Tennessee Herbarium records and field observations made in 2008 and 

compared to general phenologies listed in selected literature sources.  Phenologies of R. 

conicus and T. horridus were estimated by monitoring their occurrence in field 
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populations of Carduus nutans in 2008 and 2009 (T. horridus only).  Of the seven 

Cirsium thistles that occur in Tennessee, four species [C. arvense (introduced), C. 

carolinianum (native), C. horridulum (native), and C. vulgare (introduced)] either bud 

and/or bloom during the spring when adult R. conicus are ovipositing and the larvae feed 

within developing buds and flowers.  Although differences in mean number of buds, 

flowers, and/or seedheads occurred in each species at some point throughout the year, 

general plant phenologies from herbarium records and field observations followed similar 

trends for spring-, summer-, and fall-blooming thistles. The discrepancy in monthly mean 

numbers of these plant parts between field observations and herbarium specimens may 

reflect a collection bias for herbarium plant specimens that are suitable and practical for 

display and storage, with smaller plant specimens or those possessing fewer heads 

possibly preferred by plant collectors to represent the species in collections. While field 

observations for these studies were conducted in eastern Tennessee, the range of 

elevations and latitudes at which plant populations were surveyed may emulate climatic 

conditions in other areas of the state and influence plant phenologies similarly. Therefore, 

plant phenologies in field populations in other areas of Tennessee are not expected to be 

drastically different from what was observed during this study. Differences in bud, 

flowerhead, and seedhead numbers between the herbarium and field-observed plants 

illustrate that if abundance of specific plant parts (such as flowers) or other plant growth 

characteristics during a specific time period is an important factor for studies, monitoring 

of naturally-occurring populations should be implemented to properly estimate plant 

growth characteristics in the field.     
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When phenologies of C. carolinianum and C. horridulum were compared to the 

phenology of R. conicus, significant levels of budding occurred with both native thistles 

during the period of oviposition of R. conicus on buds of Carduus nutans, and both native 

thistles were flowering when R. conicus was ovipositing on flowers of C. nutans. As the 

larvae of T. horridus feed within rosettes of musk thistle beginning in late December 

throughout early May, and all eight thistles recorded from Tennessee overwinter as 

rosettes, all thistle species may be susceptible to infestation by this weevil.  Therefore, 

the potential exists for these weevils to utilize native Cirsium species found in Tennessee 

as host plants. 

 In surveys conducted to investigate non-target feeding of R. conicus and T. 

horridus on native Cirsium thistle species in naturally-occurring populations, no non-

target feeding by R. conicus was observed, but adults of T. horridus were observed on all 

five native Cirsium thistles.  These adult occurrences are the first documentation of T. 

horridus occurring on C. carolinianum, C. horridulum, and C. muticum, and the first 

record of T. horridus occurring in the Great Smoky Mountains National Park.  While C. 

carolinianum and C. horridulum did not show symptoms of larval feeding in the 

meristematic tissues, C. altissimum, C. discolor, and C. muticum all had damaged 

meristems and possible oviposition scars on the midribs of the leaves.  However, the 

impact of feeding by larvae of T. horridus on the reproductive potential of native plants is 

uncertain, because even in the target species (musk thistle and other introduced Cirsium 

species) plant death rarely occurs, and seed production continues.  

 Studies isolating adults of R. conicus on buds and flowers of all eight thistle 

species recorded from Tennessee were conducted in 2008 and 2009 to test if R. conicus 
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could utilize these species for reproduction and what impacts larval feeding of R. conicus 

may have on plant reproduction. While no impacts were observed on C. altissimum, C. 

discolor, or C. muticum (all native fall-blooming thistles, i.e., not phenologically 

synchronous), larvae of R. conicus completed development in heads of C. carolinianum 

and C. horridulum (native spring-blooming thistles). Reductions in seed numbers of both 

of these native species were observed in both years of the study, with significant 

reductions occurring during 2008. In these enclosure studies, R. conicus readily 

oviposited on both C. carolinianum and C. horridulum at levels similar to those observed 

on Carduus nutans in 2008, and both native thistles exhibited significantly greater egg 

loads than the two introduced Cirsium species (C. arvense or C. vulgare) during both 

years. Infested heads of C. carolinianum contained proportionately more R. conicus per 

cm of plant head width than any introduced thistle species in 2008, and both C. 

carolinianum and C. horridulum contained proportionately greater numbers of R. conicus 

per head than C. arvense or C. vulgare during both years of the study.  This information, 

coupled with the lack of significant variation in body length between R. conicus reared on 

native thistles and its target host Carduus nutans, signifies that, while R. conicus 

maintains an apparent preference for Carduus nutans as a reproductive host plant in 

naturally-occurring populations in this region, this weevil has the ability to utilize the 

native thistles Cirsium carolinianum and C. horridulum as host species.  The evidence of 

the potential for R. conicus to utilize these species is tempered by the fact that no non-

target activity has been observed in naturally-occurring populations of either C. 

carolinianum or C. horridulum.   
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A study isolating adults of T. horridus on rosettes of all eight thistle species that 

occur in Tennessee was conducted in 2009 to evaluate the plant responses in height, seed 

production, bud and flower production, and the size of flowerheads of native and 

introduced thistles to feeding of T. horridus.  While damage to meristems of rosettes 

exposed to T. horridus was documented at varying levels for all eight thistle species, 

exposure to T. horridus had no effect on the numbers of damaged meristems.  Also, no 

impacts of T. horridus were observed on seed production, flowerhead width, or plant 

height for any thistle species. The number of heads per plant of C. discolor treated with 

T. horridus were lower than control plants, but this thistle was the only species to exhibit 

any detrimental response.  Additionally, while plant death occurred at varying levels in 

plants of each species, T. horridus was not a significant contributing factor for any 

species. Although damage to meristems of rosettes was documented in this study, the 

degree to which T. horridus may utilize these native Cirsium species in naturally-

occurring populations remains unclear. The levels of T. horridus to which plants were 

exposed during this study may have been too low to elicit responses in plant growth. In 

populations of Carduus nutans infested with T. horridus, many (ca. 40-50) larvae per 

rosette were necessary to impact plant growth or seed production.  Low infestation levels 

observed in naturally-occurring populations of the five native Cirsium species in 

Tennessee may indicate that even if T. horridus is utilizing native Cirsium species, no 

impacts to plants are not at meaningful levels.  T. horridus was first observed feeding on 

C. discolor in Virginia in the early-1980s, but no reductions in populations of C. discolor 

have been attributed to feeding of T. horridus since that time.   
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Based on the potential for R. conicus to negatively impact plant reproduction, and 

the occurrence of T. horridus on naturally-occurring populations of all five native thistles, 

monitoring of native thistles should be considered in land-management areas where 

conservation of native species is a priority.  These monitoring efforts could provide early 

detection of non-target feeding by R. conicus if it should occur on these native species 

and improve baseline information on which to base appropriate management decisions.   

The ability to predict where non-target activity may occur would be useful in 

establishing monitoring programs and potentially managing populations of native thistles 

infested with either weevil species. A study was initiated in 2005 to identify areas of 

potential non-target feeding by R. conicus and T. horridus by predicting habitats for their 

known introduced hosts (Carduus nutans and Cirsium vulgare) and two native thistle 

species (C. carolinianum and C. discolor) incorporating Mahalanobis distance (D2) with 

spatial analysis. Predicting habitats of thistle species is important, in light of the fact that 

R. conicus has been shown to have the ability to impact seed production in some native 

species in Tennessee, and T. horridus has been observed occurring on all native Cirsium 

species in Tennessee in the field.  The general thistle habitats within the study area were 

primarily represented in areas of relatively high solar insolation at low-middle elevations, 

with gentle slopes and slightly acidic soils containing ca. 25% clay, ca. 35% sand, and ca. 

0.75% organic matter. For most thistle species, pH, solar insolation, elevation, and 

percent clay were the most influential attributes for habitats, and percent organic matter 

and slope had the weakest influence on thistle habitats. Poisson regression showed 

associations between D2 values and plant counts at field-test sites for Carduus nutans and 

Cirsium carolinianum.  Negative binomial regression detected no association between D2 
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values and plant counts for C. discolor or C. vulgare.  During this study the highest 

resolution spatial data available for the study area were used, but higher resolution spatial 

data (i.e., 10-m pixel size) may have enabled greater delineation and prediction of 

habitats.  Studies using spatial data across a range of resolutions would be useful in 

determining the specific impacts of data resolution on habitat prediction.  Chi-square 

analysis found associations between sites where Carduus nutans was found and the 

occurrence of both weevil species and between sites where Cirsium vulgare was found 

and the occurrence of T. horridus. No associations were documented between either 

weevil or either native thistle species.  When the predicted habitats of C. nutans and 

Cirsium carolinianum were compared, the habitats of both species overlapped in ca. 12% 

of the total study area. Due to the associations between the introduced weevils and 

Carduus nutans, this area is where non-target may most likely occur.   

The findings of this project help clarify the interactions among R. conicus and T. 

horridus and thistle species in Tennessee.  Comparisons of phenologies of the weevils 

and thistle species reveal that two native species, C. carolinianum and C. horridulum, are 

most at risk to non-target feeding by R. conicus, and that the rosette stage of all five 

native thistle species is vulnerable to feeding by T. horridus.  Furthermore, adults of T. 

horridus were documented occurring at some level on all five native thistle species 

during a three-year study period. The occurrences of adult T. horridus in field 

populations, coupled with the damage exhibited to meristems of rosettes in caged plant 

studies, show that T. horridus has the ability to utilize native thistle species that occur in 

Tennessee. While no R. conicus were observed on any species of native thistle in 

naturally-occurring populations, in caged plant studies R. conicus did show the ability to 
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utilize both C. carolinianum and C. horridulum as host species and negatively impact 

seed numbers.  Monitoring of native thistle populations is crucial to determine the extent 

of future impacts of these weevils on native thistles.  The spatial model generated during 

this study accurately predicted habitats of both Carduus nutans and Cirsium 

carolinianum. Because the occurrence of Carduus nutans predicts the occurrence of both 

weevil species, sites of Cirsium carolinianum could be established to monitor R. conicus 

and T. horridus activity in areas of overlapping habitats of C. carolinianum and Carduus 

nutans.  The development of similar models for use with other Cirsium species could 

assist land managers in efforts to detect if non-target activity is occurring and aid future 

management decisions and practices. Only through continued efforts can the associations 

of these introduced weevils and native thistles be better understood. 

This research provides a basis from which future studies can be modified or 

expanded.  Modifications to studies conducted with T. horridus on native thistles could 

include the use of insecticides to prevent unwanted herbivory, the use of whole-plant 

cages to mitigate some cage effects, the propagation of plants in greenhouses or field 

plots to lessen potential site effects, and the application of larvae of T. horridus (instead 

of adults) to plants to lessen ambiguity of impact of larval feeding. Although there are 

difficulties associated with finding and removing larvae of T. horridus from plants 

infested in the field or maintaining colonies of T. horridus in the laboratory, the 

application of larvae to plants would enhance future studies of plant responses to larval 

feeding of T. horridus.  Future studies of both introduced weevils and native thistles 

could investigate the chemical, visual, or other cues that may be used by each weevil 

species to detect suitable host species.  If, for example, specific chemical cues could be 
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identified, those chemicals may possibly be synthesized and applied to an area where 

rare, threatened, or endangered (RTE) thistles occur. The mass inundation of these 

semiochemicals could disrupt feeding and oviposition of the introduced weevils and 

possibly lessen the occurrence of non-target feeding.  

Information gained during this research also may be used to enhance future 

biological control introductions.  Although several genera of European thistles were 

tested for host suitability, no thistles native to North America (i.e., the area of release) 

were tested prior to release of either R. conicus or T. horridus. Current host testing 

protocols now include native species related to the introduced host species.  As 

phenological synchrony is an important factor in non-target feeding, future non-target 

host testing should especially focus on native congeners of the target host that have 

phenologies synchronous with the proposed biological control agent. Additionally, spatial 

models that incorporate georeferenced plant population data from herbaria or natural 

resource agency databases could be used to evaluate the risk of non-target activity 

through modeling the habitats of target host species and possible native host species. The 

consideration of the phenologies of potential native host species, in conjunction with risk 

assessment using spatial analysis, should greatly improve the evaluation of non-target 

activity and reduce the likelihood of unintended host expansion observed with R. conicus 

and T. horridus on native thistles.   

 This research has demonstrated through a progression of studies that conditions 

are suitable for non-target feeding by introduced weevils to occur on native thistles in 

Tennessee. This potential non-target activity could have ecological impacts in the form of 

reduced seed numbers, thus potentially reducing population densities of some thistle 
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species, which could result in changes in composition of local plant communities of 

which these thistles are a component.  While no thistle species are listed as RTE in 

Tennessee, some thistle populations may occur in areas where conservation of native 

plants or restoration of native plant communities is a priority. The identification of the 

potential for ecological impacts in this study emphasizes the importance of monitoring 

populations of native thistle species in these areas of conservation/restoration to detect 

the presence and levels of activity of R. conicus and/or T. horridus and subsequently 

effectively manage their populations.   

 This research also may have ecological and economical benefits to areas outside 

of Tennessee and in other systems involving introduced insects and potential native host 

plants.  The innovative approach to determining the current extent of non-target feeding, 

quantifying potential impacts based on field observations and studies, and estimating 

where impacts may occur using spatial analysis provides a basis for implementing similar 

programs in the future dealing with introduced insects and native plants.
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