66 research outputs found
Elongation factor Tu's nucleotide binding is governed by a thermodynamic landscape unique among bacterial translation factors.
Molecular switches such as GTPases are powerful devices turning "on" or "off" biomolecular processes at the core of critical biological pathways. To develop molecular switches de novo, an intimate understanding of how they function is required. Here we investigate the thermodynamic parameters that define the nucleotide-dependent switch mechanism of elongation factor (EF) Tu as a prototypical molecular switch. EF-Tu alternates between GTP- and GDP-bound conformations during its functional cycle, representing the "on" and "off' states, respectively. We report for the first time that the activation barriers for nucleotide association are the same for both nucleotides, suggesting a guanosine nucleoside or ribose-first mechanism for nucleotide association. Additionally, molecular dynamics (MD) simulations indicate that enthalpic stabilization of GDP binding compared to GTP binding originates in the backbone hydrogen bonding network of EF-Tu. In contrast, binding of GTP to EF-Tu is entropically driven by the liberation of bound water during the GDP- to GTP-bound transition. GDP binding to the apo conformation of EF-Tu is both enthalpically and entropically favored, a feature unique among translational GTPases. This indicates that the apo conformation does not resemble the GDP-bound state. Finally, we show that antibiotics and single amino acid substitutions can be used to target specific structural elements in EF-Tu to redesign the thermodynamic landscape. These findings demonstrate how, through evolution, EF-Tu has fine-tuned the structural and dynamic features that define nucleotide binding, providing insight into how altering these properties could be exploited for protein engineering
A Predictive Model of Intein Insertion Site for Use in the Engineering of Molecular Switches
Inteins are intervening protein domains with self-splicing ability that can be used as molecular switches to control activity of their host protein. Successfully engineering an intein into a host protein requires identifying an insertion site that permits intein insertion and splicing while allowing for proper folding of the mature protein post-splicing. By analyzing sequence and structure based properties of native intein insertion sites we have identified four features that showed significant correlation with the location of the intein insertion sites, and therefore may be useful in predicting insertion sites in other proteins that provide native-like intein function. Three of these properties, the distance to the active site and dimer interface site, the SVM score of the splice site cassette, and the sequence conservation of the site showed statistically significant correlation and strong predictive power, with area under the curve (AUC) values of 0.79, 0.76, and 0.73 respectively, while the distance to secondary structure/loop junction showed significance but with less predictive power (AUC of 0.54). In a case study of 20 insertion sites in the XynB xylanase, two features of native insertion sites showed correlation with the splice sites and demonstrated predictive value in selecting non-native splice sites. Structural modeling of intein insertions at two sites highlighted the role that the insertion site location could play on the ability of the intein to modulate activity of the host protein. These findings can be used to enrich the selection of insertion sites capable of supporting intein splicing and hosting an intein switch
A Computational Investigation on the Connection between Dynamics Properties of Ribosomal Proteins and Ribosome Assembly
Assembly of the ribosome from its protein and RNA constituents has been studied extensively over the past 50 years, and experimental evidence suggests that prokaryotic ribosomal proteins undergo conformational changes during assembly. However, to date, no studies have attempted to elucidate these conformational changes. The present work utilizes computational methods to analyze protein dynamics and to investigate the linkage between dynamics and binding of these proteins during the assembly of the ribosome. Ribosomal proteins are known to be positively charged and we find the percentage of positive residues in r-proteins to be about twice that of the average protein: Lys+Arg is 18.7% for E. coli and 21.2% for T. thermophilus. Also, positive residues constitute a large proportion of RNA contacting residues: 39% for E. coli and 46% for T. thermophilus. This affirms the known importance of charge-charge interactions in the assembly of the ribosome. We studied the dynamics of three primary proteins from E. coli and T. thermophilus 30S subunits that bind early in the assembly (S15, S17, and S20) with atomic molecular dynamic simulations, followed by a study of all r-proteins using elastic network models. Molecular dynamics simulations show that solvent-exposed proteins (S15 and S17) tend to adopt more stable solution conformations than an RNA-embedded protein (S20). We also find protein residues that contact the 16S rRNA are generally more mobile in comparison with the other residues. This is because there is a larger proportion of contacting residues located in flexible loop regions. By the use of elastic network models, which are computationally more efficient, we show that this trend holds for most of the 30S r-proteins
- β¦