266 research outputs found

    The development of a dielectric separation technique for diamond

    Get PDF
    Imperial Users onl

    Using Game Development to Engage Students in Science and Technology

    Get PDF
    Game design workshops, camps and activities engage K-12 students In STEM disciplines that use game engine and development tools. Game development will have students create games and simulations that Will inspire them to love technology while learning math, physics, and,logic. By using tools such as Gamemaker, Alice, Unity, Gamesalad and others, students will get a sense of confidence and accomplishment creating games and simulations

    R&D performance business plan

    Get PDF

    DEM simulations of the frictional and frictionless polydisperse packings of spheres under uniaxial compression

    Get PDF
    The uniaxial compression of polydisperse assemblies of spherical frictional and frictionless particles is modeled with the discrete element method (DEM). The normal particle size distribution with standard deviation of particle mean diameter in the range from 0% to 80% was applied. The series of numerical tests have been conducted to study the micromechanical and macromechanical properties of packings of spheres. The micro-scale analyses included distribution of contact forces and average coordination number, whereas macromechanical study included the elasticity, stress transmission and angle of internal friction in the assemblies. The linear increase in solid fraction was observed for standard deviation of particle mean diameter increasing up to 50% in assemblies of both, frictional and frictionless spheres under pressure of 100kPa. Further increase in particle size heterogeneity decreased solid fraction in systems. The increase in coefficient of interparticle friction resulted in decrease in solid fraction by above 10% in the whole range of variability of SD value due to the different space-filling properties of frictional particles. The stiffness of samples increased with compressive loads increasing, however no clear effect of particle size polydispersity on the effective elastic modulus of mixtures was found in frictional sphere packings. The effective elastic modulus increased with SD value increasing up to 50% in sample composed of smooth particles that decreased for higher SD values. Discrete element method predicted decrease in pressure ratio with standard deviation of particle mean diameter increasing up to 50%. Further increase in particle size polydispersity increased value of the parameter. Increase in coefficient of interparticle friction to 0.4 resulted in about 40% decrease in pressure ratio in sphere packings

    The potential influence of Asian and African mineral dust on ice, mixed-phase and liquid water clouds

    Get PDF
    This modelling study explores the availability of mineral dust particles as ice nuclei for interactions with ice, mixed-phase and liquid water clouds, also tracking the particles' history of cloud-processing. We performed 61 320 one-week forward trajectory calculations originating near the surface of major dust emitting regions in Africa and Asia using high-resolution meteorological analysis fields for the year 2007. Dust-bearing trajectories were assumed to be those coinciding with known dust emission seasons, without explicitly modelling dust emission and deposition processes. We found that dust emissions from Asian deserts lead to a higher potential for interactions with high ice clouds, despite being the climatologically much smaller dust emission source. This is due to Asian regions experiencing significantly more ascent than African regions, with strongest ascent in the Asian Taklimakan desert at ~25%, ~40% and 10% of trajectories ascending to 300 hPa in spring, summer and fall, respectively. The specific humidity at each trajectory's starting point was transported in a Lagrangian manner and relative humidities with respect to water and ice were calculated in 6-h steps downstream, allowing us to estimate the formation of liquid, mixed-phase and ice clouds. Downstream of the investigated dust sources, practically none of the simulated air parcels reached conditions of homogeneous ice nucleation (<i>T</i>≲−40 °C) along trajectories that have not experienced water saturation first. By far the largest fraction of cloud forming trajectories entered conditions of mixed-phase clouds, where mineral dust will potentially exert the biggest influence. The majority of trajectories also passed through atmospheric regions supersaturated with respect to ice but subsaturated with respect to water, where so-called "warm ice clouds" (<i>T</i>≳−40 °C) theoretically may form prior to supercooled water or mixed-phase clouds. The importance of "warm ice clouds" and the general influence of dust in the mixed-phase cloud region are highly uncertain due to both a considerable scatter in recent laboratory data from ice nucleation experiments, which we briefly review in this work, and due to uncertainties in sub-grid scale vertical transport processes unresolved by the present trajectory analysis. For "classical" cirrus-forming temperatures (<i>T</i>≲−40 °C), our results show that only mineral dust ice nuclei that underwent mixed-phase cloud-processing, most likely acquiring coatings of organic or inorganic material, are likely to be relevant. While the potential paucity of deposition ice nuclei shown in this work dimishes the possibility of deposition nucleation, the absence of liquid water droplets at <i>T</i>≲−40 °C makes the less explored contact freezing mechanism (involving droplet collisions with bare ice nuclei) highly inefficient. These factors together indicate the necessity of further systematic studies of immersion mode ice nucleation on mineral dust suspended in atmospherically relevant coatings

    Differences in MOPITT surface level CO retrievals and trends from Level 2 and Level 3 products in coastal grid boxes

    Get PDF
    Users of MOPITT (Measurement of Pollution in the Troposphere) data are advised to discard retrievals performed over water from analyses. This is because MOPITT retrievals are more sensitive to near-surface CO when performed over land than water, meaning that they have a greater measurement component and are less tied to the a priori CO concentrations (which are taken from a model climatology) that are necessarily used in their retrieval. MOPITT Level 3 (L3) products are a 1∘ × 1∘ gridded average of finer-resolution (∼ 22 × 22 km) Level 2 (L2) retrievals. In the case of coastal L3 grid boxes, L2 retrievals performed over both land and water may be averaged together to create the L3 product, with L2 retrievals over land not contributing to the average at all in certain situations. This conflicts with data usage recommendations. The aim of this paper is to highlight the consequences that this has on surface level retrievals and their temporal trends in “as-downloaded” L3 data (L3O), by comparing them to those obtained if only the L2 retrievals performed over land are averaged to create the L3 product (L3L), for all identified coastal L3 MOPITT grid boxes. First, the difference between surface level retrievals in L3L and the corresponding L2 retrievals performed over water (L3W) is established for days when they are averaged together to create the L3O product for coastal grid boxes (yielding an L3O surface index of “mixed”, L3OM). Mean retrieved volume mixing ratios (VMRs) in L3L differ by over 10 ppbv from those in L3W, and temporal trends detected in L3L are between 0.28 and 0.43 ppbv yr−1 stronger than in L3W, on average. These L3L − L3W differences are clearly linked to retrieval sensitivity differences, with L3W being more heavily tied to the a priori CO profiles used in the retrieval, which are a model-derived monthly mean climatology that, by definition, has no trend year to year. VMRs in the resulting L3OM are significantly different to L3L for 45 % of all coastal grid boxes, corresponding to 75 % of grid boxes where the L3L − L3W difference is also significant. Just under half of the grid boxes that featured a significant L3L − L3W trend difference also see trends differing significantly between L3L and L3OM. Factors that determine whether L3OM and L3L differ significantly include the proportion of the surface covered by land/water and the magnitude of land–water contrast in retrieval sensitivity. Comparing the full L3O dataset to L3L, it is shown that if L3O is filtered so that only retrievals over land (L3OL) are analysed – as recommended – there is a huge loss of days with data for coastal grid boxes. This is because L2 retrievals over land are routinely discarded during the L3O creation process for these grid boxes. There is less data loss if L3OM retrievals are also retained, but the resulting L3O “land or mixed” (L3OLM) subset still has fewer data days than L3L for 61 % of coastal grid boxes. As shown, these additional days with data feature some influence from retrievals made over water, demonstrably affecting mean VMRs and their trends. Coastal L3 grid boxes contain 33 of the 100 largest coastal cities in the world, by population. Focusing on the L3 grid boxes containing these cities, it is shown that mean VMRs in L3OL and L3L differ significantly for 11 of the 27 grid boxes that can be compared (there are no L3OL data for 6 of the grid boxes studied), with 9 of the 18 grid boxes where temporal trend analysis can be performed in L3OL featuring a trend that is significantly different to that in L3L. These differences are a direct result of the data loss in L3OL – data that are available in L2 data (and are incorporated into the L3L product created for this study). The L3L − L3OLM mean VMR difference exceeds 10 (22) ppbv for 11 (3) of these 33 grid boxes, significant in 13 cases, with significant temporal trend differences in 5 cases. It is concluded that an L3 product based only on L2 retrievals over land – the L3L product analysed in this paper, available for public download – could be of benefit to MOPITT data users.</p

    Characterization of trace gas emissions at an intermediate port

    Get PDF
    Growing ship traffic in Atlantic Canada strengthens the local economy but also plays an important role in greenhouse gas and air pollutant emissions in this coastal environment. A mobile open-path Fourier transform infrared (OP-FTIR; acronyms defined in Appendix A) spectrometer was set up in Halifax Harbour (Nova Scotia, Canada), an intermediate harbour integrated into the downtown core, to measure trace gas concentrations in the vicinity of marine vessels, in some cases with direct or near-direct marine combustion plume intercepts. This is the first application of the OP-FTIR measurement technique to real-time, spectroscopic measurements of CO2, CO, O3, NO2, NH3, CH3OH, HCHO, CH4 and N2O in the vicinity of harbour emissions originating from a variety of marine vessels, and the first measurement of shipping emissions in the ambient environment along the eastern seaboard of North America outside of the Gulf Coast. The spectrometer, its active mid-IR source and its detector were located on shore while the passive retroreflector was on a nearby island, yielding a 455&thinsp;m open path over the ocean (910&thinsp;m two-way). Atmospheric absorption spectra were recorded during day, night, sunny, cloudy and substantially foggy or precipitating conditions, with a temporal resolution of 1&thinsp;min or better. A weather station was co-located with the retroreflector to aid in the processing of absorption spectra and the interpretation of results, while a webcam recorded images of the harbour once per minute. Trace gas concentrations were retrieved from spectra by the MALT non-linear least squares iterative fitting routine. During field measurements (7 days in July–August 2016; 12 days in January 2017) AIS information on nearby ship activity was manually collected from a commercial website and used to calculate emission rates of shipping combustion products (CO2, CO, NOx, HC, SO2), which were then linked to measured concentration variations using ship position and wind information. During periods of low wind speed we observed extended ( ∼ 9&thinsp;h) emission accumulations combined with near-complete O3 titration, both in winter and in summer. Our results compare well with a NAPS monitoring station  ∼ 1&thinsp;km away, pointing to the extended spatial scale of this effect, commonly found in much larger European shipping channels. We calculated total marine sector emissions in Halifax Harbour based on a complete AIS dataset of ship activity during the cruise ship season (May–October 2015) and the remainder of the year (November 2015–April 2016) and found trace gas emissions (tonnes) to be 2.8&thinsp;% higher on average during the cruise ship season, when passenger ship emissions were found to contribute 18&thinsp;% of emitted CO2, CO, NOx, SO2 and HC (0.5&thinsp;% in the off season due to occasional cruise ships arriving, even in April). Similarly, calculated particulate emissions are 4.1&thinsp;% higher during the cruise ship season, when passenger ship emissions contribute 18&thinsp;% of the emitted particulate matter (PM) (0.5&thinsp;% in the off season). Tugs were found to make the biggest contribution to harbour emissions of trace gases in both cruise ship season (23&thinsp;% NOx, 24&thinsp;% SO2) and the off season (26&thinsp;% of both SO2 and NOx), followed by container ships (25&thinsp;% NOx and SO2 in the off season, 21&thinsp;% NOx and SO2 in cruise ship season). In the cruise ship season cruise ships were observed to be in third place regarding trace gas emissions, whilst tankers were in third place in the off season, with both being responsible for 18&thinsp;% of the calculated emissions. While the concentrations of all regulated trace gases measured by OP-FTIR as well as the nearby in situ NAPS sensors were well below maximum hourly permissible levels at all times during the 19-day measurement period, we find that AIS-based shipping emissions of NOx over the course of 1 year are 4.2 times greater than those of a nearby 500&thinsp;MW stationary source emitter and greater than or comparable to all vehicle NOx emissions in the city. Our findings highlight the need to accurately represent emissions from the shipping and marine sectors at intermediate ports integrated into urban environments. Emissions can be represented as pseudo-stationary and/or pseudo-line sources.</p

    Case report - glimepiride poisoning mimicking vertebrobasilar acute ischemic stroke

    Get PDF
    Hypoglycemia is a dangerous adverse effect of some blood glucose-lowering agents like insulin and sulfonylureas. Sympathetic nervous symptoms and impaired consciousness are common in hypoglycemia, while paresis is rare and creates diagnostic difficulties. So far, only about 10 cases of paresis caused by sulfonylureas were described (including only one with persistent neurological deficits). We describe the case of the man with sulfonylurea induced hypoglycemia manifesting as acute encephalopathy with focal neurological signs misdiagnosed as posterior circulation acute ischemic stroke (AIS)

    Fat perception in the human frontal operculum, insular and somatosensory cortex

    Get PDF
    Here, we combined magnetic resonance imaging with lesion-symptom mapping in patients with chronic brain lesions to investigate brain representations of sugar and fat perception. Patients and healthy controls rated chocolate milkshakes that only differed in sugar or fat content. As compared to controls, patients showed an impaired fat, but not sugar perception. Impairments in fat perception overlapped with the anterior insula and frontal operculum, together assumed to underpin gustatory processing. We also identified the mid-dorsal insula as well as the primary and secondary somatosensory cortex - regions previously assumed to integrate oral-sensory inputs. These findings suggest that fat perception involves a specific set of brain regions that were previously reported to underpin gustatory processing and oral-sensory integration processes
    corecore