80 research outputs found
Dopamine-induced dissociation of BOLD and neural activity in macaque visual cortex
Neuromodulators determine how neural circuits process information during cognitive states such as wakefulness, attention, learning, and memory [1]. fMRI can provide insight into their function and dynamics, but their exact effect on BOLD responses remains unclear [2, 3 and 4], limiting our ability to interpret the effects of changes in behavioral state using fMRI. Here, we investigated the effects of dopamine (DA) injections on neural responses and haemodynamic signals in macaque primary visual cortex (V1) using fMRI (7T) and intracortical electrophysiology. Aside from DA’s involvement in diseases such as Parkinson’s and schizophrenia, it also plays a role in visual perception [5, 6, 7 and 8]. We mimicked DAergic neuromodulation by systemic injection of L-DOPA and Carbidopa (LDC) or by local application of DA in V1 and found that systemic application of LDC increased the signal-to-noise ratio (SNR) and amplitude of the visually evoked neural responses in V1. However, visually induced BOLD responses decreased, whereas cerebral blood flow (CBF) responses increased. This dissociation of BOLD and CBF suggests that dopamine increases energy metabolism by a disproportionate amount relative to the CBF response, causing the reduced BOLD response. Local application of DA in V1 had no effect on neural activity, suggesting that the dopaminergic effects are mediated by long-range interactions. The combination of BOLD-based and CBF-based fMRI can provide a signature of dopaminergic neuromodulation, indicating that the application of multimodal methods can improve our ability to distinguish sensory processing from neuromodulatory effects
The Dynamics of ERP and Hemodynamic Responses at Very Short Stimulus Durations
Complementary non-invasive imaging methods on human subjects such as EEG and fMRI can provide new insights into the functioning of the brain and into neurovascular coupling. Particularly, short stimulus durations rather than commonly used standard durations in fMRI experiments are suitable to study the relationship between electrophysiological and vascular measures because of reduction of non-linearities of the hemodynamic response [1]. In this study, using very short stimulus durations (0.1 ms to 5 ms) and measurements with fMRI and EEG we have found that both N75 of the visual evoked potentials and BOLD signal increase and P100 decrease with stimulus duration. In addition, the BOLD signal poststimulus undershoot also tends to deviate more with stimulus duration. These results allow to shed light on whether and which ERP components correlate well with the BOLD signal
Stimulus statistics shape oscillations in nonlinear recurrent neural networks.
Rhythmic activity plays a central role in neural computations and brain functions ranging from homeostasis to attention, as well as in neurological and neuropsychiatric disorders. Despite this pervasiveness, little is known about the mechanisms whereby the frequency and power of oscillatory activity are modulated, and how they reflect the inputs received by neurons. Numerous studies have reported input-dependent fluctuations in peak frequency and power (as well as couplings across these features). However, it remains unresolved what mediates these spectral shifts among neural populations. Extending previous findings regarding stochastic nonlinear systems and experimental observations, we provide analytical insights regarding oscillatory responses of neural populations to stimulation from either endogenous or exogenous origins. Using a deceptively simple yet sparse and randomly connected network of neurons, we show how spiking inputs can reliably modulate the peak frequency and power expressed by synchronous neural populations without any changes in circuitry. Our results reveal that a generic, non-nonlinear and input-induced mechanism can robustly mediate these spectral fluctuations, and thus provide a framework in which inputs to the neurons bidirectionally regulate both the frequency and power expressed by synchronous populations. Theoretical and computational analysis of the ensuing spectral fluctuations was found to reflect the underlying dynamics of the input stimuli driving the neurons. Our results provide insights regarding a generic mechanism supporting spectral transitions observed across cortical networks and spanning multiple frequency bands
A toolbox for the fast information analysis of multiple-site LFP, EEG and spike train recordings
<p>Abstract</p> <p>Background</p> <p>Information theory is an increasingly popular framework for studying how the brain encodes sensory information. Despite its widespread use for the analysis of spike trains of single neurons and of small neural populations, its application to the analysis of other types of neurophysiological signals (EEGs, LFPs, BOLD) has remained relatively limited so far. This is due to the limited-sampling bias which affects calculation of information, to the complexity of the techniques to eliminate the bias, and to the lack of publicly available fast routines for the information analysis of multi-dimensional responses.</p> <p>Results</p> <p>Here we introduce a new C- and Matlab-based information theoretic toolbox, specifically developed for neuroscience data. This toolbox implements a novel computationally-optimized algorithm for estimating many of the main information theoretic quantities and bias correction techniques used in neuroscience applications. We illustrate and test the toolbox in several ways. First, we verify that these algorithms provide accurate and unbiased estimates of the information carried by analog brain signals (i.e. LFPs, EEGs, or BOLD) even when using limited amounts of experimental data. This test is important since existing algorithms were so far tested primarily on spike trains. Second, we apply the toolbox to the analysis of EEGs recorded from a subject watching natural movies, and we characterize the electrodes locations, frequencies and signal features carrying the most visual information. Third, we explain how the toolbox can be used to break down the information carried by different features of the neural signal into distinct components reflecting different ways in which correlations between parts of the neural signal contribute to coding. We illustrate this breakdown by analyzing LFPs recorded from primary visual cortex during presentation of naturalistic movies.</p> <p>Conclusion</p> <p>The new toolbox presented here implements fast and data-robust computations of the most relevant quantities used in information theoretic analysis of neural data. The toolbox can be easily used within Matlab, the environment used by most neuroscience laboratories for the acquisition, preprocessing and plotting of neural data. It can therefore significantly enlarge the domain of application of information theory to neuroscience, and lead to new discoveries about the neural code.</p
Different Origins of Gamma Rhythm and High-Gamma Activity in Macaque Visual Cortex
High-gamma (80–200 Hz) activity can be dissociated from gamma rhythms in
the monkey cortex, and appears largely to reflect spiking activity in the
vicinity of the electrode
The Brain's Router: A Cortical Network Model of Serial Processing in the Primate Brain
The human brain efficiently solves certain operations such as object recognition and categorization through a massively parallel network of dedicated processors. However, human cognition also relies on the ability to perform an arbitrarily large set of tasks by flexibly recombining different processors into a novel chain. This flexibility comes at the cost of a severe slowing down and a seriality of operations (100–500 ms per step). A limit on parallel processing is demonstrated in experimental setups such as the psychological refractory period (PRP) and the attentional blink (AB) in which the processing of an element either significantly delays (PRP) or impedes conscious access (AB) of a second, rapidly presented element. Here we present a spiking-neuron implementation of a cognitive architecture where a large number of local parallel processors assemble together to produce goal-driven behavior. The precise mapping of incoming sensory stimuli onto motor representations relies on a “router” network capable of flexibly interconnecting processors and rapidly changing its configuration from one task to another. Simulations show that, when presented with dual-task stimuli, the network exhibits parallel processing at peripheral sensory levels, a memory buffer capable of keeping the result of sensory processing on hold, and a slow serial performance at the router stage, resulting in a performance bottleneck. The network captures the detailed dynamics of human behavior during dual-task-performance, including both mean RTs and RT distributions, and establishes concrete predictions on neuronal dynamics during dual-task experiments in humans and non-human primates
- …