2,182 research outputs found
Evolutionary improvement of programs
Most applications of genetic programming (GP) involve the creation of an entirely new function, program or expression to solve a specific problem. In this paper, we propose a new approach that applies GP to improve existing software by optimizing its non-functional properties such as execution time, memory usage, or power consumption. In general, satisfying non-functional requirements is a difficult task and often achieved in part by optimizing compilers. However, modern compilers are in general not always able to produce semantically equivalent alternatives that optimize non-functional properties, even if such alternatives are known to exist: this is usually due to the limited local nature of such optimizations. In this paper, we discuss how best to combine and extend the existing evolutionary methods of GP, multiobjective optimization, and coevolution in order to improve existing software. Given as input the implementation of a function, we attempt to evolve a semantically equivalent version, in this case optimized to reduce execution time subject to a given probability distribution of inputs. We demonstrate that our framework is able to produce non-obvious optimizations that compilers are not yet able to generate on eight example functions. We employ a coevolved population of test cases to encourage the preservation of the function's semantics. We exploit the original program both through seeding of the population in order to focus the search, and as an oracle for testing purposes. As well as discussing the issues that arise when attempting to improve software, we employ rigorous experimental method to provide interesting and practical insights to suggest how to address these issues
Searching for invariants using genetic programming and mutation testing
Invariants are concise and useful descriptions of a program's behaviour. As most programs are not annotated with invariants, previous research has attempted to automatically generate them from source code. In this paper, we propose a new approach to invariant generation using search. We reuse the trace generation front-end of existing tool Daikon and integrate it with genetic programming and a mutation testing tool. We demonstrate that our system can find the same invariants through search that Daikon produces via template instantiation, and we also find useful invariants that Daikon does not. We then present a method of ranking invariants such that we can identify those that are most interesting, through a novel application of program mutation
JVM-hosted languages: They talk the talk, but do they walk the walk?
The rapid adoption of non-Java JVM languages is impressive: major international corporations are staking critical parts of their software infrastructure on components built from languages such as
Scala and Clojure. However with the possible exception of Scala,
there has been little academic consideration and characterization
of these languages to date. In this paper, we examine four nonJava JVM languages and use exploratory data analysis techniques
to investigate differences in their dynamic behavior compared to
Java. We analyse a variety of programs and levels of behavior to
draw distinctions between the different programming languages.
We briefly discuss the implications of our findings for improving
the performance of JIT compilation and garbage collection on the
JVM platform
The Glasgow raspberry pi cloud: a scale model for cloud computing infrastructures
Data Centers (DC) used to support Cloud services
often consist of tens of thousands of networked machines under a single roof. The significant capital outlay required to replicate such infrastructures constitutes a major obstacle to practical implementation and evaluation of research in this domain. Currently, most research into Cloud computing relies on either limited software simulation, or the use of a testbed environments
with a handful of machines. The recent introduction of the
Raspberry Pi, a low-cost, low-power single-board computer, has made the construction of a miniature Cloud DCs more affordable.
In this paper, we present the Glasgow Raspberry Pi Cloud
(PiCloud), a scale model of a DC composed of clusters of
Raspberry Pi devices. The PiCloud emulates every layer of a
Cloud stack, ranging from resource virtualisation to network
behaviour, providing a full-featured Cloud Computing research and educational environment
The use of uplift modelling in the reconstruction of drainage development and landscape evolution in the repeatedly glaciated Trent catchment, English Midlands, UK
The Trent Valley Palaeolithic Project has recently investigated the Quaternary evolution of the River Trent, the northernmost river system in western Europe with a documented long-timescale terrace staircase. The uppermost and lowermost reaches of the Trent, which drains the English Midlands, were glaciated during Marine oxygen Isotope Stage (MIS) 2, but older fluvial terraces dating back to MIS 8 are preserved in the remainder of the catchment, delineating the former course through the Lincoln Gap and across the Fen Basin (the modern course to the Humber estuary dating only from the latest Pleistocene). Numerical modelling enables lateral variations in uplift across the catchment to be deduced from differences in height of these fluvial terraces above the modern valley floor. Uplift rates thus indicated over the last two climate cycles attain values of ∼0.08 mm a−1 around Nottingham and Derby in the middle reach of the Trent, but are significantly lower elsewhere in the catchment; these variations are shown to relate to lateral variations in crustal properties, primarily variations in radioactive heat production in the underlying continental crust. Glaciation during the late Middle Pleistocene (MIS 8) caused significant changes to the Trent catchment, including the integration of the modern Upper Trent with the rest of the system. Older sedimentary evidence is much more fragmentary, but is used along with the results of the uplift modelling to reconstruct the earlier drainage. It is thus inferred that between the Anglian (MIS 12) and Wragby (MIS 8) glaciations the Trent already flowed into the Fen Basin via the Lincoln Gap, but the smaller-than-present catchment, indicated by gravel lithology, resulted in a much steeper longitudinal gradient, such that during interglacials (MIS 11 and 9) an elongated estuary would have developed, extending inland almost to the present location of Newark. Prior to the Anglian, much of the modern Trent catchment, including the rivers Derwent and Dove, drained into the former Bytham River. The modern Middle Trent catchment downstream of Nottingham was drained by a relatively small ‘Ancaster Trent’ river, which flowed above the Ancaster Gap; analysis of gravel lithology suggests that it probably joined the Bytham in the area that now forms the Fen Basin
THE FORMULATION OF SUBSTITUTE MATERIALS WITH PREDETERMINED CHARACTERISTICS OF RADIATION ABSORPTION AND SCATTERING
PhDA comprehensive study of the substitute materials used in clinical
radiation dosimetry has shown that many of the existing products
give poor simulation for both photon and electron interactions•
Those materials with known composition were classified according
to the errors in their attenuation and energy absorption coefficients,
stopping and angular scattering powers compared to those for the
material being simulated Large discrepancies were found at low
photon energies, with lung and bone substitutes giving poor results.
The existing selection procedures were evaluated and two new
techniques were evolved, namely, the BASIC DATA METHOD and
the EXTENDED Vx) METHOD. The first procedure was based
on the attenuation and absorption quantities, while the second method
used an extension of the popular, but misused, concept of effective
atomic number.
A thorough analysis of the dependence of photon and electron
interactions on atomic number was made so that the effective atomic
number data could be manipulated more accurately.
Computer programs based on the new procedures were written
and, using a library of some 1040 materials, produced 77 new
formulations including muscle, fat, lung, bone, skin, breast,
liver, thyroid and air substitutes.
Techniques were developed for the manufacture and quality testing
of 35 of these new materials.
The results of a series of 'narrow-beam photon attenuation
measurements, nominally from 10 keV to 1 MeV, verified the high
precision of the selection procedures and provided useful data on
the contaminants present in some of the base materials.
Finally, the applications of the new substitutes in practical
dosimetry were investigated
A long Quaternary terrace sequence in the Orontes River Valley, Syria: a record of uplift and of human occupation
Mapping in the Homs region of Syria has revealed a hitherto unrecognized staircase of at least 12 gravel terraces of the upper Orontes River. The terrace gravels overlie Pliocene lacustrine marl and have been calcareously cemented into conglomerates, sometimes interbedded with cemented fine-grained alluvium. A tentative dating scheme, based on modelling the regional-scale surface uplift that has driven fluvial incision of ~ 400 m since the latest Miocene, and incorporating correlation with the dated terraces in the valley of the middle Orontes using height above the river, envisages terrace formation spanning at least the last 1.2 Ma
Optimising trotter-suzuki decompositions for quantum simulation using evolutionary strategies
One of the most promising applications of near-term quantum computing is the simulation of quantum systems, a classically intractable task. Quantum simulation requires computationally expensive matrix exponentiation; Trotter-Suzuki decomposition of this exponentiation enables efficient simulation to a desired accuracy on a quantum computer. We apply the Covariance Matrix Adaptation Evolutionary Strategy (CMA-ES) algorithm to optimise the Trotter-Suzuki decompositions of a canonical quantum system, the Heisenberg Chain; we reduce simulation error by around 60%. We introduce this problem to the computational search community, show that an evolutionary optimisation approach is robust across runs and problem instances, and find that optimisation results generalise to the simulation of larger systems
Columnar defects and vortex fluctuations in layered superconductors
We investigate fluctuations of Josephson-coupled pancake vortices in layered
superconductors in the presence of columnar defects. We study the
thermodynamics of a single pancake stack pinned by columnar defects and obtain
the temperature dependence of localization length, pinning energy and critical
current. We study the creep regime and compute the crossover current between
line-like creep and pancake-like creep motion. We find that columnar defects
effectively increase interlayer Josephson coupling by suppressing thermal
fluctuations of pancakes. This leads to an upward shift in the decoupling line
most pronounced around the matching field.Comment: 5 pages, REVTeX, no figure
Very long optical path-length from a compact multi-pass cell
The multiple-pass optical cell is an important tool for laser absorption
spectroscopy and its many applications. For most practical applications, such
as trace-gas detection, a compact and robust design is essential. Here we
report an investigation into a multi-pass cell design based on a pair of
cylindrical mirrors, with a particular focus on achieving very long optical
paths. We demonstrate a path-length of 50.31 m in a cell with 40 mm diameter
mirrors spaced 88.9 mm apart - a 3-fold increase over the previously reported
longest path-length obtained with this type of cell configuration. We
characterize the mechanical stability of the cell and describe the practical
conditions necessary to achieve very long path-lengths
- …