368 research outputs found

    Speaker-following Video Subtitles

    Full text link
    We propose a new method for improving the presentation of subtitles in video (e.g. TV and movies). With conventional subtitles, the viewer has to constantly look away from the main viewing area to read the subtitles at the bottom of the screen, which disrupts the viewing experience and causes unnecessary eyestrain. Our method places on-screen subtitles next to the respective speakers to allow the viewer to follow the visual content while simultaneously reading the subtitles. We use novel identification algorithms to detect the speakers based on audio and visual information. Then the placement of the subtitles is determined using global optimization. A comprehensive usability study indicated that our subtitle placement method outperformed both conventional fixed-position subtitling and another previous dynamic subtitling method in terms of enhancing the overall viewing experience and reducing eyestrain

    Harvesting Discriminative Meta Objects with Deep CNN Features for Scene Classification

    Get PDF
    Recent work on scene classification still makes use of generic CNN features in a rudimentary manner. In this ICCV 2015 paper, we present a novel pipeline built upon deep CNN features to harvest discriminative visual objects and parts for scene classification. We first use a region proposal technique to generate a set of high-quality patches potentially containing objects, and apply a pre-trained CNN to extract generic deep features from these patches. Then we perform both unsupervised and weakly supervised learning to screen these patches and discover discriminative ones representing category-specific objects and parts. We further apply discriminative clustering enhanced with local CNN fine-tuning to aggregate similar objects and parts into groups, called meta objects. A scene image representation is constructed by pooling the feature response maps of all the learned meta objects at multiple spatial scales. We have confirmed that the scene image representation obtained using this new pipeline is capable of delivering state-of-the-art performance on two popular scene benchmark datasets, MIT Indoor 67~\cite{MITIndoor67} and Sun397~\cite{Sun397}Comment: To Appear in ICCV 201

    Magnetic Proximity Effect and Interlayer Exchange Coupling of Ferromagnetic/Topological Insulator/Ferromagnetic Trilayer

    Get PDF
    Magnetic proximity effect between topological insulator (TI) and ferromagnetic insulator (FMI) is considered to have great potential in spintronics. However, a complete determination of interfacial magnetic structure has been highly challenging. We theoretically investigate the interlayer exchange coupling of two FMIs separated by a TI thin film, and show that the particular electronic states of the TI contributing to the proximity effect can be directly identified through the coupling behavior between two FMIs, together with a tunability of coupling constant. Such FMI/TI/FMI structure not only serves as a platform to clarify the magnetic structure of FMI/TI interface, but also provides insights into designing the magnetic storage devices with ultrafast response.Comment: 7 pages, 4 figure

    A novel direct power control for open-winding brushless doubly-fed reluctance generators fed by dual two-level converters using a common DC bus

    Get PDF
    A new direct power control (DPC) strategy for open-winding brushless doubly-fed reluctance generators (BDFRGs) with variable speed constant frequency is proposed. The control winding is open-circuited and fed by dual traditional two-level three phase converters using a common DC bus, and the DPC strategy aiming at maximum power point tracking and common mode voltage elimination is designed. Compared to the traditional three-level converter systems, the DC bus voltage, the voltage rating of power devices and capacity of the single two-level converter are all reduced by 50% while the reliability, redundancy and fault tolerance of the proposed system still greatly improved. Consequently its effectiveness is evaluated by simulation tests on a 42 kW prototype generator in MATLAB/SIMULINK

    Photo2Relief: Let Human in the Photograph Stand Out

    Full text link
    In this paper, we propose a technique for making humans in photographs protrude like reliefs. Unlike previous methods which mostly focus on the face and head, our method aims to generate art works that describe the whole body activity of the character. One challenge is that there is no ground-truth for supervised deep learning. We introduce a sigmoid variant function to manipulate gradients tactfully and train our neural networks by equipping with a loss function defined in gradient domain. The second challenge is that actual photographs often across different light conditions. We used image-based rendering technique to address this challenge and acquire rendering images and depth data under different lighting conditions. To make a clear division of labor in network modules, a two-scale architecture is proposed to create high-quality relief from a single photograph. Extensive experimental results on a variety of scenes show that our method is a highly effective solution for generating digital 2.5D artwork from photographs.Comment: 10 pages, 11 figure
    corecore