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Harvesting Discriminative Meta Objects with Deep CNN Features

for Scene Classification

Ruobing Wu†1 Baoyuan Wang‡ Wenping Wang† Yizhou Yu†

† The University of Hong Kong ‡ Microsoft Technology and Research

Abstract

Recent work on scene classification still makes use of

generic CNN features in a rudimentary manner. In this pa-

per, we present a novel pipeline built upon deep CNN fea-

tures to harvest discriminative visual objects and parts for

scene classification. We first use a region proposal tech-

nique to generate a set of high-quality patches potentially

containing objects, and apply a pre-trained CNN to extract

generic deep features from these patches. Then we perform

both unsupervised and weakly supervised learning to screen

these patches and discover discriminative ones represent-

ing category-specific objects and parts. We further apply

discriminative clustering enhanced with local CNN fine-

tuning to aggregate similar objects and parts into groups,

called meta objects. A scene image representation is con-

structed by pooling the feature response maps of all the

learned meta objects at multiple spatial scales. We have

confirmed that the scene image representation obtained us-

ing this new pipeline is capable of delivering state-of-the-

art performance on two popular scene benchmark datasets,

MIT Indoor 67 [22] and Sun397 [31].

1. Introduction

Deep convolutional neural networks (CNNs) have

gained tremendous attention recently due to their great suc-

cess in boosting the performance of image classification

[14, 19], object detection [7, 26], action recognition [12]

and many other visual computing tasks [23, 21]. In the

context of scene classification, although a series of state-of-

the-art results on popular benchmark datasets (MIT Indoor

67[22], SUN397 [31]) have been achieved, CNN features

are still used in a rudimentary manner. For example, recent

work in [33] simply trains the classical Alex’s net [14] on a

scene-centric dataset (“Places”) and directly extracts holis-

tic CNN features from entire images.

1This work was partially completed when the first author was an intern

at Microsoft Research.

The architecture of CNNs suggests that they might not

be best suited for classifying images, including scene im-

ages, where local features follow a complex distribution.

The reason is that spatial aggregation performed by pooling

layers in a CNN is too simple, and does not retain much

information about local feature distributions. When critical

inference happens in the fully connected layers near the top

of the CNN, aggregated features fed into these layers are in

fact global features that neglect local feature distributions.

It has been shown in [8] that in addition to the entire im-

age, it is consistently better to extract CNN features from

multiscale local patches arranged in regular grids.

In order to build a discriminative representation based

on deep CNN features for scene image classification, we

need to address two technical issues: (1) Objects within

scene images could exhibit dramatically different appear-

ances, shapes, and aspect ratios. To detect diverse local ob-

jects, one could in theory add many perturbations to the in-

put image by warping and cropping at various aspect ratios,

locations, and scales, and then feed all of them to the CNN.

This is, however, not feasible in practice; (2) To distinguish

one scene category from another, it is much desired to har-

vest discriminative and representative category-specific ob-

jects and object parts. For example, to tell a “city street”

from a “highway”, one needs to identify objects that can

only belong to a “city street” but not a “highway” scene.

Pandey and Lazebnik [20] adopt the standard DPM to adap-

tively infer potential object parts. It is however unclear how

to initialize the parts and how to efficiently learn them using

CNN features.

In this paper, we present a novel pipeline built upon

deep CNN features for harvesting discriminative visual ob-

jects and parts for scene classification. We first use a re-

gion proposal technique to generate a set of high-quality

patches potentially containing objects [3]. We apply a pre-

trained CNN to extract generic deep features from these

patches. Then, for each scene category, we train a one-

class SVM on all the patches generated from the images for

this class as a discriminative classifier [25], which heavily

prunes outliers and other non-representative patches. The
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remaining patches correspond to the objects and parts that

frequently occur in the images for this scene category. To

further harvest the most discriminative patches, we apply a

non-parametric weakly supervised learning model to screen

these remaining patches according to their discriminative

power across different scene categories. Instead of directly

using the chosen category-specific objects and parts, we

further perform discriminative clustering to aggregate sim-

ilar objects and parts into groups. Each resulting group is

called a “Meta Object”. Finally, a scene image representa-

tion is obtained by pooling the feature response maps of all

the learned meta objects at multiple spatial scales to retain

more information about their local spatial distribution. Lo-

cally aggregated CNN features are more discriminative than

those global features fed into the fully connected layers in a

single CNN.

There exists much recent work advocating the concept

of middle-level objects and object parts for efficient scene

image classification [16, 20, 27, 11, 4, 30]. Among them,

the methods proposed in [4, 11] are most relevant. Nonethe-

less, there exist major differences between our method and

theirs. First, we use multiscale object proposals instead of

grid-based sampling with multiple patch sizes, thus we can

intrinsically obtain better discriminative object candidates.

Second, we aggregate our meta objects through deep CNN

features while previous methods primarily rely on low-level

features (i.e., HOG). As demonstrated through experiments,

deep features are more semantically meaningful when used

for characterizing middle-level objects. Last but not the

least, there exist significantly different components along

individual pipelines. For instance, we adopt unsupervised

learning to prune outliers while Juneja et al. [11] train a

large number of exemplar-SVMs, which is more computa-

tionally intensive. Furthermore, our discriminative cluster-

ing component also plays an important role in aggregating

meta objects.

In summary, this paper has the following contributions:

(1) We propose a novel pipeline for scene classification that

is built on top of deep CNN features. The advantages of this

pipeline are orthogonal to any category independent region

proposal methods [29, 34, 3] and middle-level parts learn-

ing algorithms [4, 20, 11]. (2) We propose a simple yet

efficient method that integrates unsupervised and weakly

supervised learning for harvesting discriminative and repre-

sentative category-specific patches, which we further aggre-

gate into a compact set of groups, called meta objects, via

discriminative clustering. (3) Instead of global fine-tuning,

we locally fine-tune the CNN using the meta objects discov-

ered from the target dataset. We have confirmed through ex-

periments that the scene image representation obtained us-

ing this pipeline is capable of delivering state-of-the-art per-

formance on two popular scene benchmark datasets, MIT

Indoor 67 [22] and Sun397 [31].

2. A New Pipeline for Scene Classification

In this section, let us present the main components of

our proposed new pipeline for scene classification. As illus-

trated in Figure 1, our pipeline is built on top of a pre-trained

deep convolutional neural network, which is regarded as a

generic feature extractor for image patches. In the context

of scene classification, instead of directly transferring these

features [33] or global fine-tuning on whole images using

the groundtruth labels [6, 7], we perform local fine-tuning

on discriminative yet representative local patches that cor-

respond to visual objects or their parts. As for scene classi-

fication datasets, bounding boxes or segment masks are not

available for our desired local patches. In order to harvest

them, we first adapt the latest algorithms to generate image

regions potentially containing objects, expecting a high re-

call of all informative ones (Section 2.1). Then we first ap-

ply an unsupervised learning technique, one-class SVMs, to

prune those proposed regions that do not appear frequently

in the images for a specific scene class. This is followed by a

weakly supervised learning step to screen the remaining re-

gion proposals and discard those patches that are unlikely to

be useful for differentiating a specific scene category from

other categories (Section 2.2).

To further improve the generality and representativeness

of the remaining patches, we perform discriminative clus-

tering to aggregate them into a set of meta objects (Sec-

tion 2.3). Finally, our scene image representation is built on

top of the probability distribution of the mined meta objects

(Section 2.4).

2.1. Region Proposal Generation

As discussed in Section 1, for arbitrary objects with

varying size and aspect ratio, the traditional sliding win-

dow based object detection paradigm requires multiresolu-

tion scanning using windows with different aspect ratios.

For example, in pedestrian detection [5], at least two win-

dows should be used to search for the full body and upper

body of pedestrians. Recently, an alternative paradigm has

been developed that performs perceptual grouping with the

goal of proposing a limited number of high-quality regions,

that likely enclose objects. Tasks including object detec-

tion [7] and recognition [9] can then be built on top of these

proposed regions only without considering other non-object

regions. There is a large body of literature along this new

paradigm for efficiently generating region proposals with

a high recall, including selective search [29], edge-boxes

[34], and multi-scale combinatorial grouping (MCG) [3].

We empirically choose MCG as the first component in our

pipeline for generating high-quality region proposals, but

one can use other methods as well. Figure 3 shows a few

examples of regions generated by MCG. We also use region

proposals from hierarchical image segmentation [2] at the

same time (see Sec.2.5).
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Figure 1. Flowchart of our pipeline. From left to right: (a) Training scene images are processed by MCG [3] and we obtain top ranked

region proposals (yellow boxes). (b) Patches are screened by our non-parametric scheme and only discriminative patches remain. (c)

Discriminative clustering is performed to build meta objects. Three meta objects are shown here: ‘computer screen’, ‘keyboard’, ‘computer

chair’ (from top to bottom). Note that these names are for demonstration only, not labels applicable to our pipeline. (d) Local fine-tuning is

performed on Hybrid CNN [33], which decides which meta object a testing region belongs to. (e) We train an image classifier on aggregated

responses of our fine-tuned CNN. Here the response maps of two meta objects, ”computer screen” (second row) and ”keyboard” (bottom

row), are shown. Gray-scale values in the response maps indicate confidence.

Feature Extraction We use the CNN model pre-trained

on the Places dataset [33] as our generic feature extractor

for all the image regions generated by MCG. As this CNN

model only takes input images with a fixed resolution, we

follow the warping scheme described in R-CNN [7] and re-

sample a patch with an arbitrary size and aspect ratio us-

ing the required resolution. Then each patch propagates

through all the layers in the pre-trained CNN model, and

we take the 4096-dimensional vector in the FC7 layer as

the feature representation of the patch (see [14] and [33] for

detailed information about the network architecture).

2.2. Patch Screening

Screening via One-Class SVMs For each scene category,

there typically exist a set of representative regions that fre-

quently appear in the images for that category. For example,

since regions with computer monitors frequently appear in

the images for the “computer room” class, a region con-

taining monitors should be a representative region. Mean-

while, there are other regions that might only appear in few

images. Such non-representative patches can be viewed as

outliers for a certain scene category. On the basis of this ob-

servation, we adopt one-class SVMs [25] as discriminative

models for removing non-representative patches. A one-

class SVM separates all the data samples from the origin to

achieve outlier detection. Let x1, x2, ..., xl(xi ∈ Rd) be the

proposed regions from the same class, and Φ : X −→ H
be a kernel function that maps original region features into

another feature space. Training a one-class SVM needs to

solve the following optimization:

min
w,ξ,ρ

1

2
‖w‖2 +

1

υl

l∑

i=1

ξi − ρ (1)

subject to

(w · Φ(xi)) ≥ ρ− ξi, ξi ≥ 0, i = 1, 2, ..., l,

where υ(∈ (0, 1]) controls the ratio of outliers. The deci-

sion function

f(x) = sign(w · Φ(xi)− ρ) (2)

should return the positive sign given the representative

patches and the negative sign given the outliers. This is

because the representative patches tend to stay in a local

region in the feature space while the outliers are scattered

around in this space. To further improve the performance,

we train a series of cascaded classifiers, each of which la-

bels 15% of the input patches as outliers and prune them.

We typically use 3 cascaded classifiers.

Weakly Supervised Soft Screening After the region pro-

posal step and outliers removal, let us suppose that mi im-

age patches have been generated for each image Ii, and

these patches likely contain objects or object parts. Let us

denote a patch from Ii as pij (j ∈ {1, ...,mi}), and use yi
to represent the scene category label of image Ii. We as-

sociate each image patch pij with a weight wi
j ∈ [0, 1] in-

dicating the discriminative power of the patch among scene
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Figure 2. Patch weight distribution after weakly supervised patch

screening.

category labels. Our goal is to estimate this weight for ev-

ery patch. Intuitively, a discriminative patch should have

a high probability of appearing in one scene category and

low probabilities of appearing in the other categories. That

means, if we find the set of K nearest neighbors Ni
j of pij

from all image patches generated from all training images

except Ii, we can use the following class density estimator

to set wi
j :

wi
j = P (yi|p

i
j) =

P (pij , yi)

P (pij)
≈ Ky/K, (3)

where Ky is the number of patches among the K nearest

neighbors that share the same scene label with pij . By as-

suming that the K nearest neighbors of pij are almost iden-

tical to pij , we use Ky to estimate the joint probability be-

tween a patch pij and its label yi. Empirically we set K to

100 in all the experiments. It is worth noting that patches

with large weights also have more representative power. As

representative patches would occur frequently in the visual

world [27], it is unlikely for non-representative patches to

find similar ones (as its nearest neighbors) that share the

same scene label. Fig. 2 shows the distribution of patch

weights after our screening process.

2.3. Meta Object Creation and Classification

Once we have identified the most discriminative image

patches, the next step is grouping these patches into clusters

such that ideally patches in the same cluster should contain

visual objects that belong to the same category and share

the same semantic meaning. This is important for discover-

ing the relationship between scene category labels and the

labels of object clusters. Clustering also helps to show the

internal variation of an object label. For example, desks

facing a few different directions in a classroom might be

grouped into several clusters. We call every patch cluster a

meta object. Note that meta objects could correspond to vi-

sual objects but could also correspond to parts and patches

that characterize the commonalities within a scene category.

We adopt the Regularized Information Maximization

(RIM) algorithm [13] to perform discriminative clustering.

RIM strikes a balance among cluster separation, cluster bal-

ance and cluster complexity. Fig. 3 shows a few clusters

after applying RIM to the screened discriminative patches

from the MIT 67 Indoor Scenes dataset [22]. As we can

see, the patches within the same cluster has similar appear-

ances and the same semantic meaning. Here we can also

observe the discriminative power of such clusters. For ex-

ample, the wine buckets (top row in Fig. 3) only show up in

wine cellars, and the cribs (second row from the bottom in

Fig. 3) only show up in nurseries.

Local Fine-Tuning for Patch Classification Given the

set of meta objects, we need a classifier to decide which

meta object a patch from a testing image belongs to. There

are various options for this classifier, including GMM-type

probabilistic models, SVMs, and neural networks. We

choose to fine-tune the pre-trained CNN on our meta ob-

jects, which include the collection of discriminative patches

surviving the patch screening process. We perform stochas-

tic gradient descent over the pre-trained CNN using the

warped discriminative image patches and their correspond-

ing meta object labels. Take MIT Indoor 67 [22] as an ex-

ample. After weakly supervised patch screening (Section

2.2), there exist around a million remaining image patches,

and 120 meta objects are discovered during the clustering

step (Section 2.3). In the CNN, we replace the original out-

put layer that performs ImageNet-specific 1000-way classi-

fication with a new output layer that does 121-way classifi-

cation while leaving all other layers unchanged. Note that

we need to add one extra class to represent those patches

that are discarded during the screening step. The reason

for local fine-tuning is obtaining an accurate meta object

classifier that is also robust to noisy labels generated by the

discriminative clustering algorithm used in Section 2.3.

2.4. Image Representation with Meta Objects

Inspired by previous work such as object-bank [16] and

bag-of-parts (BOF) [11], we hypothesize that any scene im-

age can be represented as a bag of meta objects as well.

Suppose N meta objects have been learned during discrim-

inative clustering (Section 2.3).

Given a testing image, we still perform MCG to obtain

region proposals. Every region can be classified into one

of the discriminative object clusters using our meta object

classifier. Spatial aggregation of these meta objects can be

performed using Spatial Pyramid Matching (SPM) [32]. In

our implementation, we use three levels of SPM, and adap-

tively choose the centroid of all meta objects falling into a

SPM region as the splitting center of its subregions. This

strategy can better balance the number of meta objects that

fall into each subregion. After applying SPM to the testing
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Figure 3. Examples of patch clusters (meta objects) from the MIT 67 Indoor dataset [22]. Patches on the same row belong to the same meta

object. The rightmost column shows the average image, namely the ‘center’, of the corresponding meta object.

image, we obtain a hierarchical spatial histogram of meta

object labels over the image, which can be used for deter-

mining the scene category of this testing image.

Another pooling method we consider is Vector of Lo-

cally Aggregated Descriptors (VLAD) [10, 1]. We com-

pute a modified version of VLAD that suits our framework.

Specifically, we use our discriminative object clusters (meta

objects) as the clusters for computing VLAD. That means

we do not perform K-means clustering for VLAD. It is im-

portant to maintain such consistency because otherwise the

recognition performance would degrade by 1.5% on the

MIT 67 Indoor Scenes dataset (from 78.41% to 76.9%).

Other steps are similar to the standard VLAD. Given region

proposals of an image, we assign each region to its nearest

cluster center, and aggregate the residuals of the region fea-

tures, resulting in a 4096-d vector per cluster. Suppose there

are k clusters. The dimension of this per-cluster vector is

reduced to (4096/k)-d using PCA. Finally, these (4096/k)-d

vectors are concatenated into a 4096-d VLAD descriptor.

The holistic Places CNN feature extracted from the

whole image is also useful for training the scene image clas-

sifier since they also encode local as well as global informa-

tion of the scene.

We train a neural network with two fully-connected hid-

den layers (each with 200 nodes) using normalized VLAD

(or SPM) features concatenated with the holistic Places

CNN features. The relative weight between these two types

of features are learned via cross validation on a small por-

tion of the training data. We use the rectified linear function

(ReLU) as the activation function of the neurons in the hid-

den layers.

2.5. MultiLevel Image Representation

Our image representation with meta objects can be gen-

eralized to a multi-level representation. The insight here

is that objects with different sizes and scales may supply

complementary cues for scene classification. To achieve

this, we switch to multi-level region proposals. The coarser

levels deal with larger objects, while the finer levels deal

with smaller objects and object parts. On each level, re-

gion proposals are generated and screened separately. Lo-

cal fine-tuning for patch classification is also performed on

each level separately. During the training stage of the final

image classifier, the image representation is defined as the

concatenation of the feature vectors from all levels. In prac-

tice, we find a 2-level representation sufficient. The bottom

level includes relatively small regions from a finer level in

a region hierarchy [2] to capture small objects and object

parts in an image, while the top level includes region pro-

posals generated by MCG as well as relatively large regions

from a coarser level in the region hierarchy to capture large

objects.
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3. Experiments and Discussions

In this section, we evaluate the performance of our

framework, named MetaObject-CNN, on the MIT Indoor

67 [22] and SUN 397 [31] datasets as well as analyze the

effectiveness of the specific choices we made at every stage

of our pipeline introduced in Section 2.

3.1. Datasets

MIT Indoor 67 MIT Indoor 67 [22] is a challenging in-

door scene dataset, which contains 67 scene categories and

a total of 15,620 images. The number of images varies

across categories (but at least 100 images per category). In-

door scenes tend to have more variations in terms of compo-

sition, and are better characterized by the objects they have.

This is consistent with the motivation of our framework.

SUN397 SUN397 [31] is a large-scale scene dataset,

which contains 397 scene categories and a total of 108,754

images (also at least 100 images per category). The cate-

gories include different kinds of indoor and outdoor scenes

which show tremendous object and alignment variance, thus

bringing more complexity in learning a good classifier.

3.2. Experimental Setup

For MIT Indoor 67, we train our model on the commonly

adopted benchmark, which contains 80 training images and

20 testing images per category. We choose 192 (64) top

ranked region proposals generated using MCG and hierar-

chical image segmentation for every training and testing im-

age in the bottom (top) level. The feature representation of

a proposed region is set to the 4096-dimensional vector at

the FC7 layer of the Hybrid CNN from [33]. After outlier

removal (3 iterations of 15% filtering out), we further dis-

card 16% patches, where the ratio is determined via cross

validation on a small portion of the training data. Then

we perform data augmentation (to 4 times larger) on the

remaining patches using reflection, small rotation and ran-

dom distortion. Discriminative clustering is performed on

the augmented patches to produce 120 (40) meta objects

for local fine-tuning in the bottom (top) level, which is per-

formed on the Hybrid CNN by replacing the original output

layer that performs ImageNet-specific 1000-way classifica-

tion with a new output layer that does 121-way (41-way)

classification while leaving all other layers unchanged. The

pooling step (SPM and our modified VLAD) is discussed

in Section 2.4. The image classification is done by a neural

network with two fully-connected layers (200 nodes each)

on the concatenated feature vector of VLAD pooling and

the Hybrid CNN feature of the whole image.

For SUN 397, we adopt the commonly used evaluation

benchmark that contains 50 training images and 50 testing

images per category for each split from [31]. 96 (32) top

ranked regions are generated using MCG for every train-

ing and testing image in the bottom (top) level. The feature

representation of a proposed region is also set to the 4096-

dimensional vector at the FC7 layer of the Hybrid CNN.

After outlier removal (3 iterations of 15% filtering out), we

further discard 24% patches. Data augmentation is also

performed on the remaining patches involving reflection,

small rotation and random distortion. Discriminative clus-

tering results in 450 (150) meta objects in the bottom (top)

level. Local fine-tuning is further performed on the Hybrid

CNN by replacing the original output layer with a new out-

put layer that does 451-way (151-way) classification while

leaving all other layers unchanged. We also train a neural

network with two fully-connected layers (200 nodes each)

on the concatenated feature vector of VLAD pooling and

the Hybrid CNN feature of the whole image to deal with

image level classification.

3.3. Comparisons with StateoftheArt Methods

In Table 1, we compare the recognition rate of

our method (MetaObject-CNN) against published results

achieved with existing state-of-the-art methods on MIT In-

door 67. Among the existing methods, oriented texture

curves (OTC) [18], spatial pyramid matching (SPM) [15],

and Fisher vector (FV) with bag of parts [11] represent ef-

fective feature descriptors as well as their associated pool-

ing schemes. Discriminative patches [27, 4] are focused

on mid-level features and representations. More recently,

deep learning and deep features have proven to be valuable

to scene classification as well [8, 33]. The recognition ac-

curacy of our method outperforms the state of the art by

around 8.1%.

Table 1. Scene Classification Performance on MIT Indoor 67

Method Accuracy(%)

SPM [15] 34.40

OTC [18] 47.33

Discriminative Patches ++ [27] 49.40

FV + Bag of parts [11] 63.18

Mid-level Elements [4] 66.87

MOP-CNN [8] 68.88

Places-CNN [33] 68.24

Hybrid-CNN [33] 70.80

MetaObject-CNN 78.90

Table. 2 shows a comparison between the recogni-

tion rate achieved with our method (MetaObject-CNN) and

those achieved with existing state-of-the-art methods on

the SUN397 dataset. In addition to the methods intro-

duced earlier, there exists additional representative work

here. Xiao et al. [33], as the collector of SUN397, inte-

grated 14 types of distance kernels including bag of fea-

tures and GIST. DeCAF [6] uses the global 4096D feature
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from a pre-trained CNN model on ImageNet. OTC together

with the HOG2x2 descriptor [18] outperforms dense Fisher

vectors [24], both of which are effective feature descriptors

for SUN397. And again, by applying deep learning tech-

niques, MOP-CNN [8] and Places-CNN [33] (fine-tuned

on SUN397) achieve state-of-the-art results (51.98% and

56.2%). With our MetaObject-CNN pipeline, we manage

to achieve a higher recognition accuracy.

Table 2. Scene Classification Performance on SUN397

Method Accuracy(%)

OTC [18] 34.56

Xiao et al. [33] 38.00

DeCAF [6] 40.94

FV [24] 47.20

OTC+HOG2x2 [18] 49.60

MOP-CNN [8] 51.98

Hybrid-CNN [33] 53.86

Places-CNN [33] 56.20

MetaObject-CNN 58.11

3.4. Evaluation and Discussion

In this section, we perform an ablation study to analyze

the effectiveness of individual components in our pipeline.

When validating each single component, we keep all the

others fixed. Specifically, we treat the final result from our

MetaObject-CNN as the baseline, and perform the analysis

by altering only one component at a time. Table 3 shows a

summary of the comparison results on MIT Indoor 67. A

detailed explanation of these results is given in the rest of

this section.

Table 3. Evaluation results on MIT Indoor 67 for varying pipeline

configurations.

Configuration Accuracy(%)

Global fine-tuning 73.88

Mode-seeking [4] with Hybrid-CNN 69.70

Mode-seeking elements instead of MCG 76.34

Dense grid-based patches 71.43

Without outlier removal and patch screening 75.12

Without outlier removal 76.30

Without patch screening 78.82

Without clustering 72.81

Without local fine-tuning 76.10

Cross-dataset evaluation 76.52

MetaObject-CNN 78.90

Global vs Local Fine-Tuning Most of the previous meth-

ods [33, 6, 12] using a pre-trained deep network primar-

ily focus on global fine-tuning for domain adaptation tasks,

which take the entire image as input and rely on the net-

work itself to learn all the informative structures embedded

within a new dataset. However, in this work, we perform

fine-tuning on local meta objects harvested in an explicit

manner. To compare, we start with the Places CNN net-

work [33], and fine-tune this network on MIT Indoor 67.

The recognition rate after such global fine-tuning is 73.88%

(top row in Table. 3), which is around 5% lower than that

of our pipeline. This indicates the advantages of our local

approach of harvesting meta objects and performing recog-

nition on top of them.

Choice of Region Proposal Method In addition to

choosing MCG [3] and hierarchical image segmentation for

generating object proposals, one might directly use dense

grid-based patches or mid-level discriminative patches dis-

covered by the pioneering techniques in [4, 27] as local ob-

ject proposals. To evaluate the effectiveness of MCG, we

have conducted the following three internal comparisons.

First, we compare our patch screening on top of region

proposal with the patch discovery process in [4], which is a

piece of representative work on learning mid-level patches

in a supervised manner. For a fair comparison, we use the

Places CNN feature (FC7) to represent the visual elements

in this work. Similar to the configuration in [4], 1600 ele-

ments are learned per class and 200 top elements per class

are used for further classification. The resulting recogni-

tion rate is 69.70% (second row in Table. 3, which is 9.2%

lower than our result. This comparison demonstrates that

region proposal plus patch screening is helpful in finding

visual objects that characterize scenes. In a second exper-

iment, we feed the top visual elements identified by [4] to

our patch clustering step, and obtain 96 meta objects. The

final recognition rate achieved with these meta objects is

76.34% (third row in Table. 3), which is around 2.6% lower

than our result. This second experiment shows that MCG

works with our pipeline better than mode-seeking elements

from [4]. Then in a third experiment, instead of taking re-

gion proposals, we have tried using all patches from a reg-

ular 8x8 grid, the result is 71.43% (fourth row in Table. 3),

which indicates patches sampled from a regular grid are not

good candidates for meta objects.

Importance of Outlier Removal and Patch Screening

To see how important our outlier removal and patch screen-

ing stages are, one can directly feed all the object propos-

als without any screening into the subsequent components

down the pipeline (discriminative clustering and local fine-

tuning). During our patch screening step, as shown in Eq.

3, we rank all the patches according to their discriminative

weights and discard those with lower weights. Here we de-

fine the total screening ratio as the percentage of discarded

patches in both outlier removal and patch soft screening
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steps. In Fig. 4 (top), we can see, when the total screen-

ing ratio is zero, the recognition accuracy is 75.12% (also

shown in the fifth row in Table. 3). This is because, al-

though we have reasonable region proposals, there could

still be many noisy ones among them. These noisy region

proposals are either false positives or non-discriminative

objects (as shown in Fig. 1) shared by multiple scene cate-

gories. On the other hand, an overly high screening ratio has

also been found to hurt recognition performance, as shown

in Fig. 4 (top). This is reasonably easy to understand be-

cause higher ratios could discard some discriminative meta

objects that would otherwise contribute to the overall per-

formance. We search for an optimal ratio through cross val-

idation on a small subset of the training data. The outlier

removal step is also important in filtering out regions that

do not fit in a certain category and brings along 2.6% im-

provement in final classification performance, as shown in

the sixth row of Table. 3).

Figure 4. Top: recognition accuracy vs. total screening ratio

on MIT Indoor 67. Bottom: recognition accuracy vs. number of

clusters in bottom level on MIT Indoor 67.

Importance of Clustering Next we justify the useful-

ness of clustering patches into meta objects. Without patch

clustering, we can directly take the collection of screened

patches as a large codebook, and treat every patch as a vi-

sual word. We then apply LSAQ [17] (with 100 nearest

neighbors) coding and SPM pooling to build the image-

level representation. The resulting recognition rate on MIT

Indoor 67 is 72.81% (eighth row in Table. 3), which is

around 6.1% lower than the result of MetaObject-CNN.

This controlled experiment demonstrates that patch clus-

tering for meta object creation is crucial in our pipeline.

Clustering patches into meta objects improves the gener-

ality and representativeness of those discovered discrimi-

native patches because clustering emphasizes the common

semantic meaning shared among similar patches while tol-

erating less important differences among them. Fig. 4 (bot-

tom) shows the impact of the number of clusters in the bot-

tom level on the final recognition rate. It is risky to group

patches into an overly small number of clusters because it

would assign patches with different semantic meanings to

the same meta object. Creating too many clusters is also

risky due to the poor generality of the semantic meanings

of meta objects.

Importance of Local Fine-Tuning Local fine-tuning has

also proven to be effective in our pipeline. We tried us-

ing the responses from the RIM clustering model directly

for pooling. On MIT Indoor 67, the recognition rate with-

out local fine-tuning is 76.10% (ninth row from the bot-

tom in Table. 3), which is around 2.8% lower than that

with local fine-tuning. This demonstrates local fine-tuning

actually defines better separation boundaries between clus-

ters, which is consistent with the common sense about fine-

tuning. We have also used the CNN locally fine-tuned on

SUN397 to perform cross-dataset classification on MIT In-

door 67. The recognition rate is 76.52% (bottom row in

Table. 3), which indicates CNNs fine-tuned over one scene

patch dataset have the potential to perform well on other

scene datasets.

4. Conclusions

We have introduced a novel pipeline for scene classifi-

cation, which is built on top of pre-trained CNN networks

via explicitly harvesting discriminative meta objects in a lo-

cal manner. Through extensive comparisons in a series of

controlled experiments, our method generates state-of-the-

art results on two popular yet challenging datasets, MIT

Indoor 67 and Sun397. Recent studies on convolutional

neural networks, such as GoogLeNet [28], indicate that us-

ing deeper models would improve recognition performance

more substantially than shallow ones. Therefore training

better generic CNNs would certainly improve its transfer

learning capability as well. Nevertheless, our approach is

intrinsically orthogonal to this line of effort. Exploring

other local fine-tuning methods would be an interesting di-

rection for future work.
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