149 research outputs found

    Evidence of Ising pairing in superconducting NbSe2_2 atomic layers

    Full text link
    Two-dimensional transition metal dichalcogenides with strong spin-orbit interactions and valley-dependent Berry curvature effects have attracted tremendous recent interests. Although novel single-particle and excitonic phenomena related to spin-valley coupling have been extensively studied, effects of spin-momentum locking on collective quantum phenomena remain unexplored. Here we report an observation of superconducting monolayer NbSe2_2 with an in-plane upper critical field over six times of the Pauli paramagnetic limit by magneto-transport measurements. The effect can be understood in terms of the competing Zeeman effect and large intrinsic spin-orbit interactions in non-centrosymmetric NbSe2_2 monolayers, where the electronic spin is locked to the out-of-plane direction. Our results provide a strong evidence of unconventional Ising pairing protected by spin-momentum locking and open up a new avenue for studies of non-centrosymmetric superconductivity with unique spin and valley degrees of freedom in the exact two-dimensional limit

    Automatic Insertion of Hot Keywords to Drive Traffic on Advertisements

    Get PDF
    Product titles and descriptions that include appropriate keywords, when used in an online advertisement, can improve the shopping feed quality and resultant traffic to the advertiser. However, online merchants lack knowledge of currently trending or popular keywords, and lacking keyword ideation, may choose suboptimal product titles. This disclosure describes techniques that enable online merchants to automatically optimize product titles or descriptions, e.g., as used in online ads. Trending or popular keywords relevant to the product are automatically added to the product title or description. Unique, product-specific insights gleaned from searched terms are utilized to improve title effectiveness automatically and at scale

    Comparing marine ecosystems of Laizhou and Haizhou Bays, China, using ecological indicators estimated from food web models

    Get PDF
    Abstract(#br)Two Ecopath mass-balance models are built to describe the structural and functional ecosystems of Laizhou Bay (LZB) for 2014–2015 and Haizhou Bay (HZB) for 2011–2012. This is the first comparative study to analyze the similarities and differences between these two bays using ecological indicators estimated from a food web model. A comparison between the two models highlights similar characteristics in trophic functioning: zooplankton and shrimps as the structuring groups are important organisms enabling the pelagic-benthic coupling in the two ecosystems; and top-down effects are the main mechanism of control within the two ecosystems. Analysis of differences between the two ecosystems indicates that: (1) the ecological size (total system throughput, TST), total exports/TST and ecosystem efficiencies are bigger in LZB; (2) the bottom-up controls from the benthos, shrimps and zooplankton are enhanced in LZB; and (3) the ecosystem state is less mature but more stable in LZB. These differences can be attributed, at least in part, to the effects of sea ranching of low trophic-level species, such as shellfish and the holothurian Stichopus japonicus , in LZB. Analysis of similarities and differences may benefit the ecosystem-based approach to fisheries management in different ecosystems

    DNA Methylation and Gene Expression of Matrix Metalloproteinase 9 Gene in Deficit and Non-deficit Schizophrenia

    Get PDF
    The biological pathology of deficit schizophrenia (DS) remains unclear. Matrix metalloproteinase 9 (MMP9) might be associated with neural plasticity and glutamate regulation, involved in schizophrenia pathogenesis. This study explores gene expression and DNA methylation of MMP9 in peripheral blood mononuclear cells (PBMCs) and their relationship with clinical symptoms in DS and non-deficit schizophrenia (NDS). Pyrosequencing was used to determine DNA methylation at CpG sites in exon 4 and exon 5 of MMP9 in 51 DS patients, 53 NDS patients and 50 healthy subjects (HC). RT-qPCR was used to detect MMP9 expression. Clinical symptoms were assessed by BPRS, SANS and SAPS scales. MMP9 expression in PBMCs was significantly higher in DS than NDS and HC subjects. Compared to NDS patients, DS patients had significantly lower DNA methylation at individual CpG sites in exon 4 and exon 5 of MMP9. Correlation analysis showed that DNA methylation in exon 4 was negatively correlated with gene expression in DS group. Positive correlation was found between MMP9 expression and negative symptoms in total schizophrenic patients. The social amotivation factor of SANS and negative syndrome of BPRS was negatively correlated with DNA methylation of CpG5-1 in DS patients but not in NDS patients. DS patients showed a specific abnormality of peripheral MMP9 expression and DNA methylation, indicating a pathological mechanism underlying DS as a specific subgroup of schizophrenia

    A New Magnetic Topological Quantum Material Candidate by Design

    Full text link
    Magnetism, when combined with an unconventional electronic band structure, can give rise to forefront electronic properties such as the quantum anomalous Hall effect, axion electrodynamics, and Majorana fermions. Here we report the characterization of high-quality crystals of EuSn2_2P2_2, a new quantum material specifically designed to engender unconventional electronic states plus magnetism. EuSn2_2P2_2 has a layered, Bi2_2Te3_3-type structure. Ferromagnetic interactions dominate the Curie-Weiss susceptibility, but a transition to antiferromagnetic ordering occurs near 30 K. Neutron diffraction reveals that this is due to two-dimensional ferromagnetic spin alignment within individual Eu layers and antiferromagnetic alignment between layers - this magnetic state surrounds the Sn-P layers at low temperatures. The bulk electrical resistivity is sensitive to the magnetism. Electronic structure calculations reveal that EuSn2_2P2_2 might be a strong topological insulator, which can be a new magnetic topological quantum material (MTQM) candidate. The calculations show that surface states should be present, and they are indeed observed by ARPES measurements.Comment: 30 page, 12 figure

    Manipulating Multiple Order Parameters via Oxygen Vacancies: The case of Eu0.5Ba0.5TiO3-{\delta}

    Get PDF
    Controlling functionalities, such as magnetism or ferroelectricity, by means of oxygen vacancies (VO) is a key issue for the future development of transition metal oxides. Progress in this field is currently addressed through VO variations and their impact on mainly one order parameter. Here we reveal a new mechanism for tuning both magnetism and ferroelectricity simultaneously by using VO. Combined experimental and density-functional theory studies of Eu0.5Ba0.5TiO3-{\delta}, we demonstrate that oxygen vacancies create Ti3+ 3d1 defect states, mediating the ferromagnetic coupling between the localized Eu 4f7 spins, and increase an off-center displacement of Ti ions, enhancing the ferroelectric Curie temperature. The dual function of Ti sites also promises a magnetoelectric coupling in the Eu0.5Ba0.5TiO3-{\delta}.Comment: Accepted by Physical Review B, 201

    Targeted metabolome and transcriptome analyses reveal changes in gibberellin and related cell wall-acting enzyme-encoding genes during stipe elongation in Flammulina filiformis

    Get PDF
    Flammulina filiformis, a typical agaric fungus, is a widely cultivated and consumed edible mushroom. Elongation of its stipe (as the main edible part) is closely related to its yield and commercial traits; however, the endogenous hormones during stipe elongation and their regulatory mechanisms are not well understood. Gibberellin (GA) plays an important role in the regulation of plant growth, but little has been reported in macro fungi. In this study, we first treated F. filiformis stipes in the young stage with PBZ (an inhibitor of GA) and found that PBZ significantly inhibited elongation of the stipe. Then, we performed GA-targeted metabolome and transcriptome analyses of the stipe at both the young and elongation stages. A total of 13 types of GAs were detected in F. filiformis; the contents of ten of them, namely, GA3, GA4, GA8, GA14, GA19, GA20, GA24, GA34, GA44, and GA53, were significantly decreased, and the contents of three (GA5, GA9, and GA29) were significantly increased during stipe elongation. Transcriptome analysis showed that the genes in the terpenoid backbone biosynthesis pathway showed varying expression patterns: HMGS, HMGR, GPS, and FPPS were significantly upregulated, while CPS/KS had no significant difference in transcript level during stipe elongation. In total, 37 P450 genes were annotated to be involved in GA biosynthesis; eight of them were upregulated, twelve were downregulated, and the rest were not differentially expressed. In addition, four types of differentially expressed genes involved in stipe elongation were identified, including six signal transduction genes, five cell cycle-controlling genes, twelve cell wall-related enzymes and six transcription factors. The results identified the types and content of GAs and the expression patterns of their synthesis pathways during elongation in F. filiformis and revealed the molecular mechanisms by which GAs may affect the synthesis of cell wall components and the cell cycle of the stipe through the downstream action of cell wall-related enzymes, transcription factors, signal transduction and cell cycle control, thus regulating stipe elongation. This study is helpful for understanding the roles of GAs in stipe development in mushrooms and lays the foundation for the rational regulation of stipe length in agaric mushrooms during production

    Oxidation resistance of graphene-coated Cu and Cu/Ni alloy

    Full text link
    The ability to protect refined metals from reactive environments is vital to many industrial and academic applications. Current solutions, however, typically introduce several negative effects, including increased thickness and changes in the metal physical properties. In this paper, we demonstrate for the first time the ability of graphene films grown by chemical vapor deposition to protect the surface of the metallic growth substrates of Cu and Cu/Ni alloy from air oxidation. SEM, Raman spectroscopy, and XPS studies show that the metal surface is well protected from oxidation even after heating at 200 \degree C in air for up to 4 hours. Our work further shows that graphene provides effective resistance against hydrogen peroxide. This protection method offers significant advantages and can be used on any metal that catalyzes graphene growth
    • 

    corecore