41 research outputs found

    Habitat adaptation rather than genetic distance correlates with female preference in fire salamanders (Salamandra salamandra)

    Get PDF
    Caspers B, Junge C, Weitere M, Steinfartz S. Habitat adaptation rather than genetic distance correlates with female preference in fire salamanders (Salamandra salamandra). Frontiers in Zoology. 2009;6(1):13.Background: Although some mechanisms of habitat adaptation of conspecific populations have been recently elucidated, the evolution of female preference has rarely been addressed as a force driving habitat adaptation in natural settings. Habitat adaptation of fire salamanders (Salamandra salamandra), as found in Middle Europe (Germany), can be framed in an explicit phylogeographic framework that allows for the evolution of habitat adaptation between distinct populations to be traced. Typically, females of S. salamandra only deposit their larvae in small permanent streams. However, some populations of the western post-glacial recolonization lineage use small temporary ponds as larval habitats. Pond larvae display several habitat-specific adaptations that are absent in stream-adapted larvae. We conducted mate preference tests with females from three distinct German populations in order to determine the influence of habitat adaptation versus neutral genetic distance on female mate choice. Two populations that we tested belong to the western post-glacial recolonization group, but are adapted to either stream or pond habitats. The third population is adapted to streams but represents the eastern recolonization lineage. Results: Despite large genetic distances with F-ST values around 0.5, the stream-adapted females preferred males from the same habitat type regardless of genetic distance. Conversely, pond-adapted females did not prefer males from their own population when compared to stream-adapted individuals of either lineage. Conclusion: A comparative analysis of our data showed that habitat adaptation rather than neutral genetic distance correlates with female preference in these salamanders, and that habitat-dependent female preference of a specific pond-reproducing population may have been lost during adaptation to the novel environmental conditions of ponds

    Nutrient and carbon dynamics along the river-estuary-ocean continuum on Central European scale

    Get PDF
    Nutrient and carbon dynamics within the river-estuary-coastal water systems are key processes to understand the matter fluxes from the terrestrial environment to the ocean. In a large-scale study we analysed those dynamics with the focus of the prevailing low water conditions by following a sampling approach based on the travel time of water. We started with a nearly Lagrangian sampling along the River Elbe (German part; 580 km within 8 days travel time). After a subsequent investigation of the estuary, the plume of the river was followed by raster sampling the German Bight (North Sea) using three ships simultaneously. In the river, intensive growth of phytoplankton was determined connected with high oxygen saturation and pH values as well as under-saturation of CO2, whereas concentrations of dissolved nutrients declined. In the estuary, the Elbe shifted from an autotrophic to a heterotrophic system: Phytoplankton died off upstream of the salinity gradient causing minima in oxygen saturation and pH, supersaturation of CO2, and a release of nutrients. In the coastal region, phytoplankton and nutrient concentrations were low, oxygen close to saturation, and pH in a typical marine range. We detected a positive relationship between pH values and oxygen saturation and a negative one between pCO2 and oxygen saturation. Corresponding to the significant particulate nutrient flux via phytoplankton, flux rates of dissolved nutrients from the river into the estuary were low and determined by depleted concentrations. In contrast, fluxes from the estuary to the coastal waters were higher and the pattern was determined by tidal currents. Overall, the presented observation approach is appropriate to better understand land-ocean fluxes, particularly if it is performed under different hydrological conditions including extremes and seems to be suitable to investigate the impact of such events in freshwater on coastal systems in future. The study was conducted within the frame of the Helmholtz MOSES initiative (Modular Observation Solutions for Earth Systems) targeting processes and impacts of hydrological extremes

    Hydrodynamics Alter the Tolerance of Autotrophic Biofilm Communities Toward Herbicides

    Get PDF
    Multiple stressors pose potential risk to aquatic ecosystems and are the main reasons for failing ecological quality standards. However, mechanisms how multiple stressors act on aquatic community structure and functioning are poorly understood. This is especially true for two important stressors types, hydrodynamic alterations and toxicants. Here we perform a mesocosm experiment in hydraulic flumes connected as a bypass to a natural stream to test the interactive effects of both factors on natural (inoculated from streams water) biofilms. Biofilms, i.e., the community of autotrophic and heterotrophic microorganisms and their extracellular polymeric substances (EPS) in association with substratum, are key players in stream functioning. We hypothesized (i) that the tolerance of biofilms toward toxicants (the herbicide Prometryn) decreases with increasing hydraulic stress. As EPS is known as an absorber of chemicals, we hypothesize (ii) that the EPS to cell ratio correlates with both hydraulic stress and herbicide tolerance. Tolerance values were derived from concentration-response assays. Both, the herbicide tolerance and the biovolume of the EPS significantly correlated with the turbulent kinetic energy (TKE), while the diversity of diatoms (the dominant group within the stream biofilms) increased with flow velocity. This indicates that the positive effect of TKE on community tolerance was mediated by turbulence-induced changes in the EPS biovolume. This conclusion was supported by a second experiment, showing decreasing effects of the herbicide to a diatom biofilm (Nitzschia palea) with increasing content of artificial EPS. We conclude that increasing hydrodynamic forces in streams result in an increasing tolerance of microbial communities toward chemical pollution by changes in EPS-mediated bioavailability of toxicants

    Resilience trinity: safeguarding ecosystem functioning and services across three different time horizons and decision contexts

    Get PDF
    Ensuring ecosystem resilience is an intuitive approach to safeguard the functioning of ecosystems and hence the future provisioning of ecosystem services (ES). However, resilience is a multi-faceted concept that is difficult to operationalize. Focusing on resilience mechanisms, such as diversity, network architectures or adaptive capacity, has recently been suggested as means to operationalize resilience. Still, the focus on mechanisms is not specific enough. We suggest a conceptual framework, resilience trinity, to facilitate management based on resilience mechanisms in three distinctive decision contexts and time-horizons: i) reactive, when there is an imminent threat to ES resilience and a high pressure to act, ii) adjustive, when the threat is known in general but there is still time to adapt management, and iii) provident, when time horizons are very long and the nature of the threats is uncertain, leading to a low willingness to act. Resilience has different interpretations and implications at these different time horizons, which also prevail in different disciplines. Social ecology, ecology, and engineering are often implicitly focussing on provident, adjustive, or reactive resilience, respectively, but these different notions and of resilience and their corresponding social, ecological, and economic trade-offs need to be reconciled. Otherwise, we keep risking unintended consequences of reactive actions, or shying away from provident action because of uncertainties that cannot be reduced. The suggested trinity of time horizons and their decision contexts could help ensuring that longer-term management actions are not missed while urgent threats to ES are given priority

    Weitere, Markus

    No full text

    Resource quantity and seasonal background alter warming effects on communities of biofilm ciliates

    No full text
    The impacts of experimental warming on field-related communities of biofilm ciliates were studied in contrasting seasons (winter vs. summer), which incorporated both different species sets and environmental background conditions. The biofilms for the experiments were cultivated in river bypass systems that were exposed to increasing temperatures based on the ambient river temperature. Opposing effects of warming were observed for ciliate 'summer' and 'winter' communities. While winter warming resulted in both stimulation (abundance and biomass) of the ciliate communities and significant shifts in the community structure, summer warming induced a significant decline in the ciliate biomass, but did not affect the relative community composition. By the simultaneous manipulation of temperature and resource density in summer, it was demonstrated that negative warming effects on the ciliate quantity during summer could be compensated by increasing the availability of food. Taken together, our results indicate that the responses of ciliate communities towards warming are strongly coupled to the availability of resources, and that the strongest impacts of environmental warming should thus be expected in resource-rich environments

    Large-scale patterns of biofilm-dwelling ciliate communities in a river network: Only small effects of stream order

    No full text
    Although biofilm-dwelling microfauna (i.e., small metazoans and protzoans) can play an important role in the flux of matter in running waters, their dynamics, and control within stream networks are as yet poorly understood. Here, we analyzed the longitudinal (from first order stream to large river) dynamics of ciliates associated to hard substrate within a river network. Both ciliate abundance and their taxonomical community structure showed no correlations to stream order, although the community structure of the largest river, the Rhine, differed from those of the other rivers. The abundances of biofilm-dwelling bacteria, algae, rotifers, and nematodes also showed no correlation with stream order. The above results contrast to the abundances of planktonic algae and bacteria that were significantly and positively correlated with the stream order. The results showed that stream size and the corresponding planktonic resource concentration are not reliable parameters in predicting the abundances and community structures of biofilm-dwelling ciliates. In fact, local parameters seemed to have stronger effects on benthic microfauna communities. Thus, the impact of small-scale habitat patterns needs further attention in explaining the community structure of biofilm-dwelling ciliates

    Intra- and interannual variability surpasses direct temperature effects on the clearance rates of the invasive clam Corbicula fluminea

    No full text
    We measured the clearance rates of the filter-feeding bivalve Corbicula fluminea over a period of 2 years. Strong seasonal variations, such as a 50-fold increase from February to July, were observed. These variations were only poorly linked to temperature, as they could be found at both the ambient field temperature and a constant temperature of 15A degrees C. Instead, peaks in the filtration activity corresponded to the spawning activity. Additionally, a strong interannual variability with much lower clearance rates in 2009 than in 2008 was identified. The low clearance rates were linked to a preceding period of low winter temperatures close to the lethal temperature of 2A degrees C and the associated reduced reproduction rates. Our findings demonstrate that other factors besides temperature and body mass can strongly affect clearance rates. These results should be considered when predicting the effects of changing temperatures on the ecosystem impact of filter-feeding bivalves
    corecore