7,324 research outputs found

    Electrochemistry and spectroelectrochemistry of iron porphyrins in the presence of nitrite

    Get PDF
    The reaction of nitrite with ferric and ferrous porphyrins was examined using visible, infrared and NMR spectroscopy. Solutions of either ferric or ferrous porphyrin were stable in the presence of nitrite, with only complexation reactions being observed. Under voltammetric conditions, though, a rapid reaction between nitrite and iron porphyrins was observed to form the nitrosyl complex, Fe(p)(NO), where Pporphyrins. The products of the reduction of ferric porphyrins in the presence of nitrite were confirmed by visible spectroelectrochemistry to be Fe(P)(NO) and [Fe(P)]2O. Visible, NMR and infrared spectroscopy were used to rule out the formation of Fe(P)(NO) by the iron-catalyzed disproportionation of nitrite. A reaction between iron porphyrins and nitrite only occurred by the presence of both oxidation states (ferric:ferrous). The kinetics of the reaction were monitored by visible spectroscopy, and the reaction was found to be first-order with respect to Fe(OEP)(Cl) and Fe(OEP). The products were the same as those observed in the spectroelectrochemical experiment. The rate was not strongly dependent upon the concentration of nitrite, indicating that the coordinated, not the free nitrite, was the reaction species. The kinetics observed were consistent with a mixed oxidation state nitrite-bridged intermediate, which carried out the oxygen transfer reaction from nitrite to the iron porphyrin. The effect of nitrite coordination on the reaction rate was examined. © 2001 Elsevier Science B.V. All rights reserved

    Assessment of synchrony in multiple neural spike trains using loglinear point process models

    Full text link
    Neural spike trains, which are sequences of very brief jumps in voltage across the cell membrane, were one of the motivating applications for the development of point process methodology. Early work required the assumption of stationarity, but contemporary experiments often use time-varying stimuli and produce time-varying neural responses. More recently, many statistical methods have been developed for nonstationary neural point process data. There has also been much interest in identifying synchrony, meaning events across two or more neurons that are nearly simultaneous at the time scale of the recordings. A natural statistical approach is to discretize time, using short time bins, and to introduce loglinear models for dependency among neurons, but previous use of loglinear modeling technology has assumed stationarity. We introduce a succinct yet powerful class of time-varying loglinear models by (a) allowing individual-neuron effects (main effects) to involve time-varying intensities; (b) also allowing the individual-neuron effects to involve autocovariation effects (history effects) due to past spiking, (c) assuming excess synchrony effects (interaction effects) do not depend on history, and (d) assuming all effects vary smoothly across time.Comment: Published in at http://dx.doi.org/10.1214/10-AOAS429 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Coexistence of gapless excitations and commensurate charge-density wave in the 2H-transition metal dichalcogenides

    Full text link
    An unexpected feature common to 2H-transition metal dichalcogenides (2H-TMDs) is revealed with first-principles Wannier functions analysis of the electronic structure of the prototype 2H-TaSe2: The low-energy Ta \red{``5dz25d_{z^2}''} bands governing the physics of charge-density wave (CDW) is dominated by hopping between next-nearest neighbors. With this motivation we develop a minimal effective model for the CDW formation, in which the unusual form of the hopping leads to an approximate decoupling of the three sublattices. In the CDW phase one sublattice remains undistorted, leaving the bands associated with it ungapped everywhere in the Fermi surface, resolving the long-standing puzzle of coexistence of gapless excitations and commensurate CDW in the 2H-TMDs.Comment: 4 pages, 5 figure

    A note on bilateral trade agreements in the presence of irreversible investment and deferred negotiations

    Get PDF
    A common result in the trade literature is that a small country will realize gains from a bilateral free trade agreement with a large country. McLaren (1997) casts aspersions on this traditional belief by demonstrating that irreversible investment in the small country, with the possibility of re-negotiation by the large country, can actually make the small country prefer autarky to free trade. In this note, we identify a middle ground where the small country can realize above-autarky utility by only partially specializing (relative to the free-trade level of specialization) in export production this improvement occurs even in the presence of irreversible investment and deferred negotiations.irreversible investment

    Dual-Topology Hamiltonian-Replica-Exchange Overlap Histogramming Method to Calculate Relative Free Energy Difference in Rough Energy Landscape

    Get PDF
    A novel overlap histogramming method based on Dual-Topology Hamiltonian-Replica-Exchange simulation technique is presented to efficiently calculate relative free energy difference in rough energy landscape, in which multiple conformers coexist and are separated by large energy barriers. The proposed method is based on the realization that both DT-HERM exchange efficiency and confidence of free energy determination in overlap histogramming method depend on the same criteria: neighboring states' energy derivative distribution overlap. In this paper, we demonstrate this new methodology by calculating free energy difference between amino acids: Leucine and Asparagine, which is an identified chanllenging system for free energy simulations.Comment: 14 pages with 4 figure
    corecore