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Abstract: The reaction of nitrite with ferric and ferrous porphyrins was 

examined using visible, infrared and NMR spectroscopy. Solutions of either 

ferric or ferrous porphyrin were stable in the presence of nitrite, with only 

complexation reactions being observed. Under voltammetric conditions, 

though, a rapid reaction was observed between nitrite and iron porphyrins to 

form the nitrosyl complex, Fe(P)(NO), where P = porphyrin. The products of 

the reduction of ferric porphyrins in the presence of nitrite were confirmed by 

visible spectroelectrochemistry to be Fe(P)(NO) and [Fe(P)]2O. Visible, NMR 

and infrared spectroscopy were used to rule out the formation of Fe(P)(NO) 

by the iron catalyzed disproportionation of nitrite.  
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A reaction between iron porphyrins and nitrite only occurred by the 

presence of both oxidation states (ferric/ferrous). The kinetics of the reaction 

was monitored by visible spectroscopy, and the reaction was found to be first-

order with respect to Fe(OEP)(Cl) and Fe(OEP). The products were the same 

as those observed in the spectroelectrochemical experiment. The rate was not 

strongly dependent upon the concentration of nitrite, indicating that the 

coordinated, not the free nitrite, was the reaction species. The observed 

kinetics was consistent with a mixed oxidation state nitrite bridged 

intermediate, which carried out the oxygen transfer reaction from nitrite to 

the iron porphyrin. The effect of nitrite coordination on the reaction rate was 

examined. 

 

Introduction 
 

Over the past two decades, the reaction of nitrite with iron 

porphyrins and heme containing enzymes has been the subject of 

considerable study. Nitrite is a very versatile molecule which can be 

involved in a wide variety of reactions such as coordination, acid/base 

or oxygen transfer chemistry. Because of this reactivity, nitrite can be, 

in some cases, a necessary intermediate (in the nitrogen cycle) or, in 

others, a toxic material. While nitrite can react with a large number of 

transition metals, the primary focus of this work will involve iron 

porphyrins which are models for iron enzymes that react with nitrite. 

Nitrite can coordinate with both the ferric [1,2,3] and ferrous [4] 

porphyrins. Ferric porphyrins generally form bis-nitro low-spin 

complexes [1,3]. 

 
If X- = halide, the mono-nitrite complex is only present over a narrow 

concentration range [1]. Weaker axial ligands such as NO3
- or ClO4

- can 

be readily displaced by nitrite, and both the mono- and bis- complexes 

have been observed. 

 

There has been some controversy as to the stability of the 

nitrite-ferric porphyrin complexes. Finnegan et al. [5] found that ferric 

porphyrins slowly reacted with nitrite to lead to Fe(P)(NO) and  

Fe(P)(NO3). O’Shea et al. [6] observed that ferric nitrite complexes 
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were stable under an argon atmosphere, and could carry out a wide 

variety of oxygen transfer reactions if an appropriate substrate was 

present: 

 
A later report attributed the instability of nitrite-ferric porphyrin 

complexes to the generation of ozone from trace dioxygen [7]. In 

addition to oxygen transfer reactions, nitrite may also be a 

nucleophile. Fanning and Keefer [8] found that nitrite will react readily 

with methylene chloride to form organonitro compounds. 

 

In the assimilatory and dissimilatory nitrite reductases, nitrite is 

first reduced to NO. The NO molecule will dissociate in cytochrome cd1 

nitrite reductases, but is reduced to ammonia in assimilatory nitrite 

reductases. The reaction of nitrite with metmyoglobin [9] and 

hemoglobin [10,11] has also been examined. For both proteins, the 

reaction product was a NO-coordinated protein. 

 

In spite of these studies, the details of the reaction of nitrite 

with ferric and ferrous porphyrins are not clear. Many of the 

experiments by Finnegan et al. [5] were carried out in methylene 

chloride, creating some ambiguities as to whether the reactions were 

due to nitrite or organonitro compounds. Some of the differences may 

also be due equilibrium shifts caused by the presence or absence of 

halide ions (e.g., chloride as the axial ligand). Munro and Scheidt [12] 

have shown that the mono-nitrite complex is more reactive than the 

bis-nitro complex. The presence of this complex was minimized in the 

work of Castro et al. [13] because they utilized ferric porphyrins with 

chloride as the axial ligand (Fe(P)(Cl)). In order to investigate these 

issues, visible and infrared spectroelectrochemistry will be used in this 

work in order to characterize as completely as possible the 

intermediates that are formed in the reaction of nitrite with ferric 

and/or ferrous porphyrins. 
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Experimental 

 

Chemicals.  
 

Octaethylporphyrin iron(III) chloride (Fe(OEP)Cl), 

tetraphenylporphyrin iron(III) chloride (Fe(TPP)Cl), 

bis(triphenylphosphoranylidene)ammonium nitrite (PNPNO2), sodium 

nitrite, bis(triphenylphosphoranylidene)ammonium chloride (PNPCl), 

dimethyl formamide, tetrahydrofuran (THF), and deuterated NMR 

solvents were obtained from Aldrich Chemical Co. Sodium nitrite (15N) 

was obtained from Isotec, and tetrabutylammonium perchlorate 

(TBAP) from G. F. Smith Chemical Co.  

Bis(triphenylphosphoranylidene)ammonium nitrite (15N) was obtained 

from the metathesis reaction of PNPCl and sodium nitrite-15N in 

distilled water. The product precipitated out of solution and was 

vacuum dried. Zinc amalgam was prepared by a literature procedure 

[14]. Ferrous-OEP was obtained by the reduction of Fe(OEP)(Cl) in THF 

by zinc amalgam. 

 

Equipment.  
 

Cyclic voltammograms were obtained with a Cypress CySy2Ra 

potentiostat. The reference electrode was a 0.1 M Ag/AgNO3 electrode 

in acetonitrile. The working and auxiliary electrodes were platinum. An 

optically transparent thin-layer electrochemical (OTTLE) cell with a 

platinum gauze working electrode was used for the visible 

spectroelectrochemical studies [15]. The spectra were obtained with a 

Hewlett-Packard 8452 diode array spectrophotometer. The infrared 

spectra were obtained with a Mattson 4020 Galaxy FT-IR. The IR 

spectroelectrochemical cell was a modified Wilmad semi-permanent 

cell [16]. The Teflon spacer between two KBr windows was replaced by 

a polyethylene spacer in which the working, reference and auxiliary 

electrodes were melt-sealed. The working and auxiliary electrodes 

were fabricated from 100 mesh platinum gauze (Aldrich Chemical Co.), 

and a silver wire (0.05 mm diameter, Johnson Matthey) was used as a 

pseudo-reference electrode. 
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Procedures.  
 

All the voltammetric solutions were deoxygenated by deaerating 

the solution for 15 min. with pre-purified dinitrogen. The dinitrogen 

was pre-saturated with the solvent in order to prevent evaporation. 

The spectroelectrochemical solutions were prepared in the glove box, 

and the data were obtained after the current had decayed to the 

background. The visible kinetics experiments were carried out using an 

anaerobic cell (Wilmad Glass Co., WG-28-G). The iron porphyrin 

solution was placed in the cuvette, and the nitrite solution was placed 

in the side arm. The reaction was carried out in an argon atmosphere. 

After the starting spectrum was recorded, the solutions were mixed, 

and the spectra were obtained using a Hewlett-Packard 8452 diode 

array spectrophotometer in the kinetics mode. The solutions were 

prepared and the cell was filled in a glove box. 

 

Results and Discussion 
 

Stability of Ferric Porphyrin-Nitrite Complexes.  
 

Nitrite in the presence of iron porphyrins has been notorious for 

the ease by which it can undergo redox reactions. In order to fully 

characterize its reactivity, it is critical that conditions under which 

redox chemistry can be avoided are identified and the spectral features 

of important iron porphyrin species are correctly identified. The 

stability of solutions of Fe(OEP)(X) (where X = NO3, Cl) in the 

presence of nitrite was examined by visible, infrared and NMR 

spectroscopy. The chemical processes that occurred when nitrite (as 

the PNP+ salt) was mixed with Fe(OEP)(X) were identified by 

monitoring the spectral changes in an anaerobic cell, as described in 

the Experimental Section. At high concentrations of nitrite (≈10 mM), 

the spectrum of the Fe(OEP)(NO2)2
- was obtained immediately upon 

mixing. Over a period of 1000 s, no additional reactions were 

observed. When X = NO3
-, the spectrum of the mono-nitrite complex 

(Fe(OEP)(NO2)) was obtained when the concentrations of nitrite and 

Fe(OEP)(NO3) were 0.10 mM (Table 1). Under these conditions, the 

complex was slightly less stable, with a 4% absorbance change 

observed over a period of 1000 s. If the reaction was allowed to 

continue for 9 hr, the spectrum for the μ-oxo complex ([Fe(OEP)]2O) 
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was observed. There was no evidence in the visible spectra for 

Fe(OEP)(NO), a product often formed by an oxygen transfer reaction. 

 

Further evidence for the stability of Fe(OEP)(X) in the presence 

of nitrite was obtained by infrared spectroscopy. Equimolar mixtures of 

Fe(OEP)(NO3) or Fe(OEP)(Cl) (1.0 mM) and nitrite (1.0 mM) were 

examined in THF. Once again there was no evidence for the nitrosyl 

complex, even though it could have been observed under these 

concentration conditions. Unfortunately, the bands for the coordinated 

nitrite at this concentration of iron porphyrin could not be observed 

due to their lower molar absorptivity and/or the solvent bands below 

1500 cm-1. 

 

The 1H NMR spectra of 1 mM Fe(OEP)(NO3) in the presence of 0, 

1 and 10 mM nitrite in DMF-d7 were also obtained. In the absence of 

nitrite, a high-spin ferric porphyrin spectrum was obtained with a 

resonance at 49.2 ppm, which is due to the methylene protons. 

Generally, two resonances are observed for the methylene protons for 

a five-coordinate complex, but a single methylene resonance has been 

observed for weak ligands such as perchlorate in the presence of a 

coordinating solvent (Fe(OEP)(ClO4): δ = 35.5 [17,18]). When the 

concentrations of Fe(OEP)(NO3) and NaNO2 were both 1 mM, the high-

spin spectrum disappeared and was replaced by a low-spin ferric 

porphyrin spectrum. If an oxygen transfer reaction occurred under the 

conditions of this experiment to form Fe(OEP)(NO) and Fe(OEP)(NO3), 

the latter complex should be observed in the proton NMR [5]. In 

addition, the experiments were completed rapidly enough so that there 

was no evidence for the μ-oxo complex (CH2: 6.04 and 5.08 ppm 

[19]), which was the long term decomposition product observed in our 

work by visible spectroscopy. 

 

The stability of Fe(OEP)(Cl)/NO2
- solutions is in agreement with 

the results of Castro et al. [7] who found that mixtures of Fe(P)(Cl) 

and nitrite were quite stable in the absence of dioxygen. The instability 

of stoichiometric ratios of Fe(P)(X) and nitrite (where X = easily 

displaceable anion) was similar to the work of Finnegan et al [5], 

where they observed a slow decomposition of the mono-nitrite 

complex. Unlike their work, though, we were unable to detect the 

disproportionation of nitrite to ferrous-NO and nitrate. This difference 
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may be due to formation of organonitro compounds in methylene 

chloride [8]. The kinetic studies in this work confirmed the report by 

Munro and Scheidt [12] that the mono-nitrite complex was more 

reactive than the bis-complex. 

 

The changes in the visible spectra of Fe(OEP)(Cl) as a function 

of nitrite concentration are shown in Figure 1. In the absence of nitrite, 

the Soret band was observed at 374 nm, with additional bands at 532 

and 629 nm. Upon addition of nitrite, the Soret band shifted to 389 

nm, the 532 and 629 nm bands decreased, and a new band appeared 

at 586 nm (Table 1). Several isosbestic points are observed in the 

spectra, indicating the presence of only two species in equilibrium. The 

best fit was obtained for the addition of two nitrite ions to the 

complex, forming Fe(OEP)(NO2)2
-. From the variation in the 

absorbance as a function of nitrite concentration, a β2 value of 27±7 

could be calculated. 

 

 

There was no evidence in the visible spectra for the mono-nitrite 

complex, Fe(OEP)(NO2), when 1.0 mM chloride was present in the 

solution. The spectrum of Fe(OEP)(NO2)2
- was identical whether one 

started with Fe(OEP)(Cl) or Fe(OEP)(NO3). 

 

Similar experiments were also carried out using Fe(TPP)(Cl), 

and were consistent with the formation of the bis-nitro complex, 

Fe(TPP)(NO2)2
-. In the absence of nitrite, the Soret band was observed 

at 414 nm, with additional bands at 508, 649 and 691 nm. Upon 

addition of nitrite, the Soret band shifted to 422 nm and the 508 nm 

band shifted to 553 nm. The spectroscopic changes were quite 

comparable to the spectra reported by Nasri et al. [3] for 

Fe(TpivPP)(NO2)2
- (424 and 551 nm) in methylene chloride (Table 1). 

 

The spectra of Fe(TPP)(NO2) and Fe(TPP)(NO2)2
- can be obtained 

from analysis of the spectral changes as a function of nitrite 

concentration. The concentration of the mono-nitrite complex was 

enhanced in this set of data because no additional chloride ion was 

added (1 mM chloride was added to all the Fe(OEP)(Cl)/nitrite 

http://www.journals.elsevier.com/inorganica-chimica-acta/
http://epublications.marquette.edu/


NOT THE PUBLISHED VERSION; this is the author’s final, peer-reviewed manuscript. The published version may be 
accessed by following the link in the citation at the bottom of the page. 

Inorganica Chimica Acta, Vol. 314, No. 1-2 (March 2001): pg. 49-57. Publisher's link. This article is © Elsevier and 
permission has been granted for this version to appear in e-Publications@Marquette. Elsevier does not grant permission 
for this article to be further copied/distributed or hosted elsewhere without the express permission from Elsevier. 

8 

 

solutions above). By using an iterative process, the values of K1 and K2 

were varied, and the concentrations of Fe(TPP)(Cl), Fe(TPP)(NO2), 

Fe(TPP)(NO2)2
-, and Cl- were calculated. From these concentration 

values, the spectra of Fe(TPP)(Cl), Fe(TPP)(NO2) and Fe(TPP)(NO2)2
- 

can be calculated by a least-squares fit. The values of K1 and K2 were 

adjusted to minimize the errors. The spectral features are summarized 

in Table 1. The spectra of Fe(TPP)(Cl) and Fe(TPP)(NO2) in DMF are 

quite similar. In addition, there is substantial agreement between the 

spectrum obtained by our work and by Finnegan et al. [5]. A 

comparison of the calculated and experimental spectra for several 

concentrations are shown in Figure 2 for K1 = 2 and K2 = 200 (β2 = 

400). 

 

The stability of FeII(OEP) in the presence of nitrite was also 

examined using the same anaerobic cell procedure. The FeII(OEP) and 

nitrite solutions (as the PNP+ salt) were mixed, and the spectral 

changes were monitored using a diode array spectrophotometer. No 

spectral changes were observed upon mixing. This indicates either that 

nitrite does not complex with FeII(OEP) or that the complex has the 

same high-spin spectrum as FeII(OEP). In any case, no redox reaction 

was observed. It is important to note that extreme care must be used 

to prevent leakage of dioxygen into the cell. This leakage was probably 

the cause of the small decrease in the Soret band (less than 5%) after 

1000 s. If any dioxygen were to leak in, a redox reaction, which will be 

discussed below, was observed. The experiment was repeated with the 

picket-fence porphyrin (FeII(TpivPP)), and the spectrum for the 

previously characterized low-spin ferrous-nitrite complex was obtained 

[4]. 

 

The results of the visible and other spectroscopic studies clearly 

indicate that both the ferric and ferrous oxidations states of iron 

porphyrins are stable in the presence of nitrite. The only reactions that 

were observed were complexation reactions between iron and nitrite. 

If any complexation occurs between FeII(OEP) and nitrite, the product 

is a high-spin complex, rather than the low-spin complex observed 

with the picket-fence porphyrin. 
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Cyclic Voltammetry.  

 

The cyclic voltammetry of Fe(OEP)(Cl) was examined in the 

presence of nitrite in DMF and THF, and was consistent with previous 

results (see Figure 3 of Ref. 1). In the absence of nitrite, two reduction 

waves were observed for Fe(OEP)(Cl) in both solvents between +0.3 

and -1.9 V vs Ag/AgNO3, with peak potentials at -0.88 V (Wave Ia) 

and -1.76 V (Wave II). When nitrite was added, a new wave was 

observed at -1.51 V (Wave Ib), and the first wave shifted slightly to -

0.84 V. The new wave (Wave Ib) occurred at the same potential as 

Fe(OEP)(NO). Wave II was essentially unchanged. While the potential 

of Wave II was unchanged, more than one redox process may be 

occurring because the Ep value for [Fe(OEP)]2O is essentially the same 

as the second wave of Fe(OEP)Cl. In addition to shifting slightly in 

potential, the cathodic current for Wave Ia decreased substantially 

when nitrite was added. All the voltammetric studies were carried out 

under conditions where it has been shown that no significant 

decomposition of the ferric species would occurred. 

 

The voltammetric data clearly indicate that a reaction is 

occurring between iron porphyrin and nitrite, as had been reported by 

previously [1,5,7,20]. The voltammetric evidence strongly suggests 

the formation of Fe(OEP)(NO). These results appear to contradict the 

visible and infrared evidence that both ferric and ferrous porphyrins 

are stable towards redox reactions in the presence of nitrite. In order 

to investigate this apparent contradiction, visible 

spectroelectrochemistry and further kinetic experiments were carried 

out. 

 

Visible Spectroelectrochemistry.  
 

The reduction of Fe(OEP)(Cl) in DMF or THF in the absence of 

nitrite gave rise to a typical FeII(OEP) spectrum (Soret band at 410 

nm) at Wave I and FeI(OEP)- spectrum at Wave II (Figure 3). When 

the solution was electrolyzed at Wave Ia in the presence of nitrite, the 

FeII(OEP) Soret band was significantly attenuated, and only appeared 

as a small shoulder (Figure 4, Curve A). In addition, a new band at 

557 nm, which was due to Fe(OEP)(NO), appeared. Using the known 

spectra for the ferrous and ferric porphyrins, the composition of the 
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product solution at Wave Ia was calculated: 0.20 mM Fe(OEP), 0.10 

mM Fe(OEP)(NO), 0.10 mM [Fe(OEP)]2O and no Fe(OEP)(Cl). The 

calculated spectra for the final product is shown in Figure 4 (Curve B). 

It is important to note that the nitrosyl and the μ-oxo complex, formed 

by the reaction of nitrite of iron porphyrins, were generated in a 1:1 

mole ratio. In addition, there was a significant amount of Fe(OEP) 

remaining, even though excess nitrite was present. This last result was 

consistent with the visible spectroscopic studies. These results indicate 

that both iron oxidation states must be present for the reaction to 

occur, suggesting a mixed oxidation state bridged intermediate: 

 
(the oxidation states of the cleavage products are presented for 

illustrative purposes; other oxidation states can be written). The 

details of the coordination of the bridged intermediate can only be 

speculated on at this time; other coordination states could also be 

written. 

 

When the potential was shifted to Wave Ib, the Soret band for 

FeII(OEP) increased due to reduction of [Fe(OEP)]2O. Authentic μ-oxo 

complex yielded the same spectroelectrochemical changes. In addition 

to the reduction of the μ-oxo complex, a new band appeared at 538 

nm (Figure 5), which is due to Fe(OEP)(NO)-. Further reduction at 

Wave II (Figure 5) gave rise to a new band at 685 nm (FeI(OEP)-), and 

the 538 nm band of Fe(OEP)(NO)- was unchanged. The Soret bands 

for Fe(OEP)(NO)- and FeI(OEP)- are quite similar, hence only one Soret 

band was observed in Figure 5. Because of the overlap of Wave Ib and 

Wave II, reduction of the μ-oxo complex will occur along with 

Fe(OEP)(NO). 
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Infrared Spectroelectrochemistry.  
 

It has previously been shown in this work that solutions of 

Fe(OEP)(Cl) and nitrite do not lead to the formation of Fe(OEP)(NO) at 

potential significantly positive of Wave Ia. Electrolysis of Fe(OEP)(Cl) 

in the presence of nitrite at a potential between Wave Ia and Ib led to 

the appearance of a band for Fe(OEP)(NO) in the infrared spectrum at 

1672 cm-1. When 15NO2
- was used, the band shifted to 1641 cm-1, 

which was identical to the band observed for Fe(OEP)(15NO). The band 

for the μ-oxo complex at 870 cm-1 could not be observed due to 

solvent absorption. 

 

Reaction Kinetics.  
 

Due to diffusion processes, the voltammetric or 

spectroelectrochemical reduction of Fe(OEP)(X) will lead to solutions 

that contain both oxidation (ferric/ferrous) states. In order to 

investigate the reaction of nitrite with iron porphyrins under these 

conditions, the kinetics of the reaction of nitrite with mixed oxidation 

state solutions were examined. When both oxidation states were 

present, an immediate reaction was observed when nitrite was added 

(Figure 6). Using the known spectra of Fe(OEP)(Cl) (in 5 mM nitrite), 

Fe(OEP), Fe(OEP)(NO) and [Fe(OEP)]2O, it was possible to calculate 

the concentration of each species as a function of time. The changes in 

concentration of reactants and products obeyed the following reaction: 

 
From the concentration of reactants as a function of time, it is possible 

to determine the rate law and the rate constant for the reaction. 

 

If Reaction 3 is the rate determining step, the rate law should 

be first-order in Fe(OEP)(NO2)2
- and Fe(OEP), and the following 

equation can be written:  

 
Using cumulative formation constant, β2, and the mass balance 

equation, Eq. 7 can be written in terms of the total concentration of 
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the ferric porphyrin, [FeIII(OEP)] (sum of all the coordination forms of 

the ferric porphyrin: FeIII(OEP)(Cl), FeIII(OEP)(NO2), FeIII(OEP)(NO2)2
-): 

 
If [NO2

-] >> [FeIII(OEP)], then the fraction of the ferric porphyrin 

species in the bis-nitro form will be constant for a given concentration 

of nitrite (experiment). In addition, when the ferric porphyrin 

concentration is about 0.1 mM, over 90% of the ferric porphyrin is in 

the bis-nitro form for concentrations of nitrite greater than 5 mM. Eq. 

7 can then be rewritten as: 

 

 
 

where k’ = k 2'. The following relationship can be written between 

[FeIII(OEP)] and [FeII(OEP)], based on the stoichiometry of the 

reaction: 

 
where MFe =MFeIII(OEP),i - 0.5 MFeII(OEP),i, and MFeIII(OEP),i and MFeII(OEP),i are 

the initial concentration of the ferric and ferrous porphyrin, 

respectively. Combining these equations, we 

can write: 

 

Integration of this equation yields: 
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A plot of left hand side of the equations as a function of t should yield 

a straight line with a slope equal to 2k’ MFe (or 2 k’) . The data for 

various concentrations of iron porphyrin and nitrite are shown in Figure 

7. The rate constants are summarized in Table 2. The agreement 

between the experimental data and the theoretical rate law confirms 

the assumption that the reaction is firstorder in both FeIII(OEP)(NO2)2
- 

and FeII(OEP). 

 

From Table 2, we can see that the observed rate constant, k’, 

was not strongly dependent upon the concentration of nitrite. This 

indicates that it is the coordinated nitrite, not the free nitrite in 

solution, that reacts with the ferric/ferrous porphyrins. From the value 

of β2, the fraction of the ferric porphyrin in the bis-nitrite form (2') 

can be calculated, and the results are summarized in Table 2. While 

the value of k’ does decrease with the concentration of nitrite, the 

dependence is much weaker than expected based in the equilibrium 

concentration of Fe(OEP)(NO2)2
-. Munro and Scheidt [12] have shown 

that the mono-nitrite complex was particularly reactive. Even though 

its equilibrium concentration is not significant under our conditions 

(which makes it possible to deconvolute the experimental spectra by 

ignoring the presence of the mono-nitro complex), it may be an 

important pathway if its rate constant (k1) is larger than the one for 

the bisnitrite complex (k2). The observed rate constant is therefore the 

combination of the two reactions: 
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Including both pathways for the formation of the bridged complex, and 

assuming that the rate of ligand exchange is faster than the redox 

reaction, the observed rate constant is equal to: 

 
where 1' is the fraction of the ferric porphyrin in the mono-nitro 

complex: 

 
and 2' has been previously defined in Eq. 7 (because the 

concentration of the mono-nitrite complex is always small, K1 can be 

ignored in the calculation of 2', and the cumulative formation 

constant, β2 used instead). Without K1, it is not possible to exactly 

calculate 1'. The value of K1, though, can be estimated to be 0.012 

from the known value of K2 (2200) in DMF [1], because 

β2 = K1K2. With these values of the equilibrium constant, the rate 

constant as a function of nitrite concentration was calculated for k1 = 

30 M-1s-1 and k2 = 6 M-1s-1 (Table 2). It is not clear why the mono-

nitrite complex is more reactive than the bis-nitrite complex. When 

this experiment was repeated using the picket-fence porphyrin, no 

reaction was observed over the same time frame. While one side of 

the porphyrin is still exposed in this complex, the ferrous species is 

complexed with nitrite under these conditions, which would 

significantly reduce its ability to form a bridged mixed-oxidation state 

intermediate. 

 

http://www.journals.elsevier.com/inorganica-chimica-acta/
http://epublications.marquette.edu/


NOT THE PUBLISHED VERSION; this is the author’s final, peer-reviewed manuscript. The published version may be 
accessed by following the link in the citation at the bottom of the page. 

Inorganica Chimica Acta, Vol. 314, No. 1-2 (March 2001): pg. 49-57. Publisher's link. This article is © Elsevier and 
permission has been granted for this version to appear in e-Publications@Marquette. Elsevier does not grant permission 
for this article to be further copied/distributed or hosted elsewhere without the express permission from Elsevier. 

15 

 

The results for the kinetics and spectroscopic studies can be 

summarized by the scheme below. Two pathways are outlined for the 

formation of the products: 

 
The kinetic evidence, shown above, favors the bridged intermediate. 

Indirect evidence favors Pathway B. The formation of FeII(P)(NO) in 

high yield would be expected by this pathway. The product formed in 

Pathway A, FeIII(P)(NO)+, would rapidly dissociate to form FeIII(P)+ + 

NO, reducing the yield of the nitrosyl complex relative to the μ-oxo 

complex, due to the escape of NO. In addition, Pathway A would give 

rise to charged intermediates in a low dielectric solvent such as THF. 

This should be less favorable than the neutral intermediates in 

Pathway B. 

 

Conclusions 
 

Nitrite is quite stable in the presence of either ferric or ferrous 

porphyrins. The only reactions observed were complexation reactions. 

The stability of these complexes is quite dependent upon the complete 

exclusion of dioxygen. When there is a mixture of oxidation states, the 

solution has the right combination of Lewis acids and bases to 

coordinate nitrite, and facilitate the oxygen transfer reaction. The 
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details of the cleavage process still needs experimental confirmation, 

but the most likely process is the transfer of oxygen from the ferric 

coordinated nitrite to the ferrous species (Pathway B). Proton NMR 

evidence showed that the ferric species was coordinated with nitrite to 

form a strong low-spin complex for either the mono- or bis-nitro 

species, while the ferrous complex is weak in the absence of additional 

interactions provided by the picket-fence porphyrin. Cleavage by 

Pathway B would also readily form the observed products in high yield. 

Steric hinderance and/or ferrous coordination (as in the picket-fence 

porphyrins), both of which would make the bridged intermediate less 

favorable, was shown to significantly reduced the rate of the redox 

reaction of nitrite with iron porphyrins. Further studies investigating 

the importance of these factors are in progress. 
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Figure Captions 
 

Figure 1. Visible spectra of 0.050 mM Fe(OEP)(Cl) in 0.10 M TBAP. 

Solvent: THF. Dotted line: 0 mM (PNP)NO2. Thick solid line: 10 mM 

(PNP)NO2 with 0 mM (PNP)Cl. Thin solid lines: intermediate 

concentrations of 2.0, 4.0, 6.0 and 10. mM (PNP)NO2 with 1 mM 

(PNP)Cl. 
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Figure 2. Visible spectra of 0.10 mM Fe(TPP)(Cl) in 0.10 mM TBAP. 

Solvent: DMF. A) 0.0 mM nitrite; B) 0.50 mM nitrite; C) 10 mM nitrite. 

Dotted lines are the calculated spectra for K1 =2 and K2 = 200. Solid 

lines are the experimental spectra. 
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Figure 3. Thin-layer visible spectroelectrochemistry of 0.50 mM 

Fe(OEP)(Cl). Thin solid line: initial spectrum; thick solid line: spectrum 

at Wave Ia; dashed line: spectrum at Wave II. Solvent: DMF; 

Supporting electrolyte: 0.10 M TBAP; Working electrode: Platinum 

gauze. 
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Figure 4. Thin-layer visible spectroelectrochemistry of 0.50 mM 

Fe(OEP)(Cl) in the presence of 5.0 mM (PNP)NO2. Curves A. Potential 

is scanned through Wave Ia. Dotted line: Initial spectrum; thin solid 

lines intermediate spectra; thick solid line: spectrum at Wave Ia. 

Curve B. Calculated spectrum based on [Fe(OEP)] = 0.20 mM; 

[Fe(OEP)(NO)] = 0.10 mM; [(Fe(OEP)2)O] = 0.10 mM. Solvent: DMF; 

Supporting electrolyte: 0.10 M TBAP; Working electrode: Platinum 

gauze. 
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Figure 5. Thin-layer visible spectroelectrochemistry of 0.50 mM 

Fe(OEP)(Cl) in the presence of 5.0 mM (PNP)NO2. Dotted line: 

spectrum at Wave Ia; thin solid line: spectra at potentials between 

Wave Ia and Wave Ib; thick solid line: spectrum at Wave Ib; dashed 

line: spectrum at Wave II. Solvent: DMF; Supporting electrolyte: 0.10 

M TBAP; Working electrode: Platinum gauze. 
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Figure 6. A. Visible spectra obtained after the mixing 

Fe(OEP)/Fe(OEP)(Cl) with nitrite. [Fe(OEP)(Cl)] = [Fe(OEP)] = 0.050 

mM; [NO2
-] = 10 mM; Solvent = THF. Dotted solid line: 0 s; thin solid 

lines: 200, 400, 600 and 800 s. Thick solid line: 1000 s. 
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Figure 7. Variation in the concentration of Fe(OEP)(Cl)/Fe(OEP) as a 

function of time. Solid symbols: left y-scale. Open symbols: right y-

scale. Open symbols: [Fe(OEP)(Cl)] = [Fe(OEP)] = 0.050 mM; () 

[NO2
-] = 0.050 mM; () [NO2

-] = 0.50 mM; () [NO2
-] = 5.0 mM. 

Solid symbols: () [Fe(OEP)(Cl)] = 0.050 mM; [Fe(OEP)] = 0.025 mM; 

[NO2
-] = 5.0 mM; (▲) [Fe(OEP)(Cl)] = 0.025 mM; [Fe(OEP] = 0.050 

mM; [NO2
-] = 5.0 mM. 
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