63 research outputs found
A Soluble Phase Field Model
The kinetics of an initially undercooled solid-liquid melt is studied by
means of a generalized Phase Field model, which describes the dynamics of an
ordering non-conserved field phi (e.g. solid-liquid order parameter) coupled to
a conserved field (e.g. thermal field). After obtaining the rules governing the
evolution process, by means of analytical arguments, we present a discussion of
the asymptotic time-dependent solutions. The full solutions of the exact
self-consistent equations for the model are also obtained and compared with
computer simulation results. In addition, in order to check the validity of the
present model we confronted its predictions against those of the standard Phase
field model and found reasonable agreement. Interestingly, we find that the
system relaxes towards a mixed phase, depending on the average value of the
conserved field, i.e. on the initial condition. Such a phase is characterized
by large fluctuations of the phi field.Comment: 13 pages, 8 figures, RevTeX 3.1, submitted to Physical Review
Recommended from our members
Empowerment/sexism: Figuring female sexual agency in contemporary advertising
This paper argues that there has been a significant shift in advertising representations of women in recent years, such that rather than being presented as passive objects of the male gaze, young women in adverts are now frequently depicted as active, independent and sexually powerful. This analysis examines contemporary constructions of female sexual agency in advertisements examining three recognizable ‘figures’: the young, heterosexually desiring ‘midriff’, the vengeful woman set on punishing her partner or ex partner for his transgressions, and the ‘hot lesbian’, almost always entwined with her beautiful Other or double. Using recent examples of adverts the paper asks how this apparent ‘agency’ and ‘empowerment’ should be understood.
Drawing on accounts of the incorporation or recuperation of feminist ideas in advertising the paper takes a critical approach to these representations, examining their exclusions, their constructions of gender relations and heteronormativity, and the way power is figured within them. A feminist poststructuralist approach is used to interrogate the way in which ‘sexual agency’ becomes a form of regulation in these adverts, that requires the re-moulding of feminine subjectivity to fit the current postfeminist, neoliberal moment in which young women should not only be beautiful but sexy, sexually knowledgeable/practised and always ‘up for it’.
The paper makes an original contribution to debates about representations of gender in advertising, to poststructuralist analyses about the contemporary operation of power, and to writing about female ‘sexual agency’ by suggesting that ‘voice’ or ‘agency’ may not be the solution to the ‘missing discourse of female desire' but may in fact be a technology of discipline and regulation
Spatially heterogeneous ages in glassy dynamics
We construct a framework for the study of fluctuations in the nonequilibrium
relaxation of glassy systems with and without quenched disorder. We study two
types of two-time local correlators with the aim of characterizing the
heterogeneous evolution: in one case we average the local correlators over
histories of the thermal noise, in the other case we simply coarse-grain the
local correlators. We explain why the former describe the fingerprint of
quenched disorder when it exists, while the latter are linked to noise-induced
mesoscopic fluctuations. We predict constraints on the pdfs of the fluctuations
of the coarse-grained quantities. We show that locally defined correlations and
responses are connected by a generalized local out-of-equilibrium
fluctuation-dissipation relation. We argue that large-size heterogeneities in
the age of the system survive in the long-time limit. The invariance of the
theory under reparametrizations of time underlies these results. We relate the
pdfs of local coarse-grained quantities and the theory of dynamic random
manifolds. We define a two-time dependent correlation length from the spatial
decay of the fluctuations in the two-time local functions. We present numerical
tests performed on disordered spin models in finite and infinite dimensions.
Finally, we explain how these ideas can be applied to the analysis of the
dynamics of other glassy systems that can be either spin models without
disorder or atomic and molecular glassy systems.Comment: 47 pages, 60 Fig
Mendelian randomization supports bidirectional causality between telomere length and clonal hematopoiesis of indeterminate potential
Human genetic studies support an inverse causal relationship between leukocyte telomere length (LTL) and coronary artery disease (CAD), but directionally mixed effects for LTL and diverse malignancies. Clonal hematopoiesis of indeterminate potential (CHIP), characterized by expansion of hematopoietic cells bearing leukemogenic mutations, predisposes both hematologic malignancy and CAD. TERT (which encodes telomerase reverse transcriptase) is the most significantly associated germline locus for CHIP in genome-wide association studies. Here, we investigated the relationship between CHIP, LTL, and CAD in the Trans-Omics for Precision Medicine (TOPMed) program (n = 63,302) and UK Biobank (n = 47,080). Bidirectional Mendelian randomization studies were consistent with longer genetically imputed LTL increasing propensity to develop CHIP, but CHIP then, in turn, hastens to shorten measured LTL (mLTL). We also demonstrated evidence of modest mediation between CHIP and CAD by mLTL. Our data promote an understanding of potential causal relationships across CHIP and LTL toward prevention of CAD
Gas-phase hydrosilylation of plasma synthesized silicon nanocrystals with short- and long-chain alkynes
Surface passivation of Si nanocrystals (NCs) is necessary to enable their utilization in novel photovoltaic and optoelectronic devices. Herein, we report the surface passivation of plasma-synthesized, H-terminated Si NCs via gas-phase hydrosilylation using a combination of short- and long-chain alkynes. Specifically, using in situ attenuated total reflection Fourier transform infrared spectroscopy, we show that a sequential exposure of the Si NC surface to acetylene and phenylacetylene results in a surface alkenyl coverage of 58%, which is close to the theoretical maximum of 55% and 60% predicted for alkyl- and alkenyl-terminated Si(111) surfaces, respectively. We attribute this unprecedented high surface hydrocarbon coverage to the combination of short- and long-chain alkynes that reduce the steric hindrance on the surface, higher reactivity of 1-alkynes versus 1-alkenes of the same chain length, and the smaller van der Waals radius of the alkenyl groups compared to the alkyl groups. Unlike 1-alkenes, 1-alkynes also react with the surface to form the 1,1- and 1,2-bridge structures via the bis-hydrosilylation reaction. However, our data clearly show that this reaction pathway cannot account for the enhanced surface coverage in the sequential exposure experiments, since exposure of the surface to just acetylene or phenylacetylene results in an almost identical surface coverage due to the 1,1- and 1,2-bridge sites
Gas-phase hydrosilylation of plasma synthesized silicon nanocrystals with short- and long-chain alkynes
Surface passivation of Si nanocrystals (NCs) is necessary to enable their utilization in novel photovoltaic and optoelectronic devices. Herein, we report the surface passivation of plasma-synthesized, H-terminated Si NCs via gas-phase hydrosilylation using a combination of short- and long-chain alkynes. Specifically, using in situ attenuated total reflection Fourier transform infrared spectroscopy, we show that a sequential exposure of the Si NC surface to acetylene and phenylacetylene results in a surface alkenyl coverage of 58%, which is close to the theoretical maximum of 55% and 60% predicted for alkyl- and alkenyl-terminated Si(111) surfaces, respectively. We attribute this unprecedented high surface hydrocarbon coverage to the combination of short- and long-chain alkynes that reduce the steric hindrance on the surface, higher reactivity of 1-alkynes versus 1-alkenes of the same chain length, and the smaller van der Waals radius of the alkenyl groups compared to the alkyl groups. Unlike 1-alkenes, 1-alkynes also react with the surface to form the 1,1- and 1,2-bridge structures via the bis-hydrosilylation reaction. However, our data clearly show that this reaction pathway cannot account for the enhanced surface coverage in the sequential exposure experiments, since exposure of the surface to just acetylene or phenylacetylene results in an almost identical surface coverage due to the 1,1- and 1,2-bridge sites
Carbon monoxide-induced reduction and healing of graphene oxide
Graphene oxide holds promise as a carbon-based nanomaterial that can be produced inexpensively in large quantities. However, its structural and electrical properties remain far from those of the graphene sheets obtained by mechanical exfoliation or by chemical vapor deposition unless efficient reduction methods that preserve the integrity of the parent carbon-network structure are found. Here, the authors use molecular dynamics and density functional theory calculations to show that the oxygen from the main functional groups present on graphene oxide sheets is removed by the reducing action of carbon monoxide; the energy barriers for reduction by CO are very small and easily overcome at low temperatures. Infrared and Raman spectroscopy experiments confirm the reduction in CO atmosphere and also reveal a strong tendency for CO to heal vacancies in the carbon network. Our results show that reduced graphene oxide with superior properties can be obtained through reduction in CO atmosphere
- …