63 research outputs found

    A Soluble Phase Field Model

    Get PDF
    The kinetics of an initially undercooled solid-liquid melt is studied by means of a generalized Phase Field model, which describes the dynamics of an ordering non-conserved field phi (e.g. solid-liquid order parameter) coupled to a conserved field (e.g. thermal field). After obtaining the rules governing the evolution process, by means of analytical arguments, we present a discussion of the asymptotic time-dependent solutions. The full solutions of the exact self-consistent equations for the model are also obtained and compared with computer simulation results. In addition, in order to check the validity of the present model we confronted its predictions against those of the standard Phase field model and found reasonable agreement. Interestingly, we find that the system relaxes towards a mixed phase, depending on the average value of the conserved field, i.e. on the initial condition. Such a phase is characterized by large fluctuations of the phi field.Comment: 13 pages, 8 figures, RevTeX 3.1, submitted to Physical Review

    Spatially heterogeneous ages in glassy dynamics

    Full text link
    We construct a framework for the study of fluctuations in the nonequilibrium relaxation of glassy systems with and without quenched disorder. We study two types of two-time local correlators with the aim of characterizing the heterogeneous evolution: in one case we average the local correlators over histories of the thermal noise, in the other case we simply coarse-grain the local correlators. We explain why the former describe the fingerprint of quenched disorder when it exists, while the latter are linked to noise-induced mesoscopic fluctuations. We predict constraints on the pdfs of the fluctuations of the coarse-grained quantities. We show that locally defined correlations and responses are connected by a generalized local out-of-equilibrium fluctuation-dissipation relation. We argue that large-size heterogeneities in the age of the system survive in the long-time limit. The invariance of the theory under reparametrizations of time underlies these results. We relate the pdfs of local coarse-grained quantities and the theory of dynamic random manifolds. We define a two-time dependent correlation length from the spatial decay of the fluctuations in the two-time local functions. We present numerical tests performed on disordered spin models in finite and infinite dimensions. Finally, we explain how these ideas can be applied to the analysis of the dynamics of other glassy systems that can be either spin models without disorder or atomic and molecular glassy systems.Comment: 47 pages, 60 Fig

    Mendelian randomization supports bidirectional causality between telomere length and clonal hematopoiesis of indeterminate potential

    Get PDF
    Human genetic studies support an inverse causal relationship between leukocyte telomere length (LTL) and coronary artery disease (CAD), but directionally mixed effects for LTL and diverse malignancies. Clonal hematopoiesis of indeterminate potential (CHIP), characterized by expansion of hematopoietic cells bearing leukemogenic mutations, predisposes both hematologic malignancy and CAD. TERT (which encodes telomerase reverse transcriptase) is the most significantly associated germline locus for CHIP in genome-wide association studies. Here, we investigated the relationship between CHIP, LTL, and CAD in the Trans-Omics for Precision Medicine (TOPMed) program (n = 63,302) and UK Biobank (n = 47,080). Bidirectional Mendelian randomization studies were consistent with longer genetically imputed LTL increasing propensity to develop CHIP, but CHIP then, in turn, hastens to shorten measured LTL (mLTL). We also demonstrated evidence of modest mediation between CHIP and CAD by mLTL. Our data promote an understanding of potential causal relationships across CHIP and LTL toward prevention of CAD

    Gas-phase hydrosilylation of plasma synthesized silicon nanocrystals with short- and long-chain alkynes

    No full text
    Surface passivation of Si nanocrystals (NCs) is necessary to enable their utilization in novel photovoltaic and optoelectronic devices. Herein, we report the surface passivation of plasma-synthesized, H-terminated Si NCs via gas-phase hydrosilylation using a combination of short- and long-chain alkynes. Specifically, using in situ attenuated total reflection Fourier transform infrared spectroscopy, we show that a sequential exposure of the Si NC surface to acetylene and phenylacetylene results in a surface alkenyl coverage of 58%, which is close to the theoretical maximum of 55% and 60% predicted for alkyl- and alkenyl-terminated Si(111) surfaces, respectively. We attribute this unprecedented high surface hydrocarbon coverage to the combination of short- and long-chain alkynes that reduce the steric hindrance on the surface, higher reactivity of 1-alkynes versus 1-alkenes of the same chain length, and the smaller van der Waals radius of the alkenyl groups compared to the alkyl groups. Unlike 1-alkenes, 1-alkynes also react with the surface to form the 1,1- and 1,2-bridge structures via the bis-hydrosilylation reaction. However, our data clearly show that this reaction pathway cannot account for the enhanced surface coverage in the sequential exposure experiments, since exposure of the surface to just acetylene or phenylacetylene results in an almost identical surface coverage due to the 1,1- and 1,2-bridge sites

    Gas-phase hydrosilylation of plasma synthesized silicon nanocrystals with short- and long-chain alkynes

    No full text
    Surface passivation of Si nanocrystals (NCs) is necessary to enable their utilization in novel photovoltaic and optoelectronic devices. Herein, we report the surface passivation of plasma-synthesized, H-terminated Si NCs via gas-phase hydrosilylation using a combination of short- and long-chain alkynes. Specifically, using in situ attenuated total reflection Fourier transform infrared spectroscopy, we show that a sequential exposure of the Si NC surface to acetylene and phenylacetylene results in a surface alkenyl coverage of 58%, which is close to the theoretical maximum of 55% and 60% predicted for alkyl- and alkenyl-terminated Si(111) surfaces, respectively. We attribute this unprecedented high surface hydrocarbon coverage to the combination of short- and long-chain alkynes that reduce the steric hindrance on the surface, higher reactivity of 1-alkynes versus 1-alkenes of the same chain length, and the smaller van der Waals radius of the alkenyl groups compared to the alkyl groups. Unlike 1-alkenes, 1-alkynes also react with the surface to form the 1,1- and 1,2-bridge structures via the bis-hydrosilylation reaction. However, our data clearly show that this reaction pathway cannot account for the enhanced surface coverage in the sequential exposure experiments, since exposure of the surface to just acetylene or phenylacetylene results in an almost identical surface coverage due to the 1,1- and 1,2-bridge sites

    Carbon monoxide-induced reduction and healing of graphene oxide

    No full text
    Graphene oxide holds promise as a carbon-based nanomaterial that can be produced inexpensively in large quantities. However, its structural and electrical properties remain far from those of the graphene sheets obtained by mechanical exfoliation or by chemical vapor deposition unless efficient reduction methods that preserve the integrity of the parent carbon-network structure are found. Here, the authors use molecular dynamics and density functional theory calculations to show that the oxygen from the main functional groups present on graphene oxide sheets is removed by the reducing action of carbon monoxide; the energy barriers for reduction by CO are very small and easily overcome at low temperatures. Infrared and Raman spectroscopy experiments confirm the reduction in CO atmosphere and also reveal a strong tendency for CO to heal vacancies in the carbon network. Our results show that reduced graphene oxide with superior properties can be obtained through reduction in CO atmosphere
    • …
    corecore