22,940 research outputs found
Applications of catastrophe theory in mechanics
A method, using Thom's classification of catastrophes, is described for the analysis of stability of systems whose static behavior is derived from a potential function. Examination of the stability of singular points of potential functions serves to illustrate the nature of the elementary catastrophes which also arise in nonconservative dynamical systems as well as in the static case of potential theory
Notes on drift theory
It is shown that there is a simpler way to derive the average guiding center drift of a distribution of particles than via the so-called single particle analysis. Based on this derivation it is shown that the entire drift formalism can be considerably simplified, and that results for low order anisotropies are more generally valid than is usually appreciated. This drift analysis leads to a natural alternative derivation of the drift velocity along a neutral sheet
Effects of Divalent Metal Cations and Resistance Mechanisms of the Cyanobacterium Synechococcus SP. Strain PCC 7942
Cyanobacteria exhibit an extraordinary resistance to many environmental factors including nutrient limitation, changes in hydrogen ion concentration, temperature, and light extremes. A better understanding of the biological effects and response mechanisms of cyanobacteria to heavy metal exposure could be used to develop these bacteria for use in bioremediation. Synechococcus sp. strain PCC 7942 expresses messenger RNA for the stress protein GroEL and for the metal-binding protein metallothionein in response to a wide range of divalent metal ion concentrations. Although groEL is expressed at low levels regardless of environmental conditions, a high rate of transcription is initiated within 15 minutes following exposure to divalent metal cations at concentrations ranging from 10 ”M to 100 ”M for copper and zinc, and concentrations as low as 1 ”M for cadmium. Transcript levels return to normal within one hour following exposure to each metal. Induction of the metallothionein operon also occurs within 15 minutes of these exposures. We speculate that these resistance mechanisms are working together to protect the cell from damage
Standard comparison test procedures for initiator output
Standard test procedures for initiators of explosive device
Remotely controlled mirror of variable geometry for small angle x-ray diffraction with synchrotron radiation
A total-reflecting mirror of 120-cm length was designed and built to focus synchrotron radiation emanating from the electron-positron storage ring at the Stanford Linear Accelerator Center (SPEAR). The reflecting surface is of
unpolished float glass. The bending and tilt mechanism allows very fine control of the curvature and selectability of the critical angle for wavelengths ranging from 0.5 to 3.0 Ă
. Elliptical curvature is used to minimize aberrations. The mirror is placed asymmetrically onto the ellipse so as to achieve a tenfold demagnification of the source. The bending mechanism reduces nonelastic
deformation (flow) and minimizes strains and stresses in the glass despite its length. Special design features assure stability of the focused image. The mirror
reduces the intensity of shorter wavelength harmonics by a factor of approximately 100
Unveiling Palomar 2: The Most Obscure Globular Cluster in the Outer Halo
We present the first color-magnitude study for Palomar 2, a distant and
heavily obscured globular cluster near the Galactic anticenter. Our (V,V-I)
color-magnitude diagram (CMD), obtained with the UH8K camera at the CFHT,
reaches V(lim) = 24 and clearly shows the principal sequences of the cluster,
though with substantial overall foreground absorption and differential
reddening. The CMD morphology shows a well populated red horizontal branch with
a sparser extension to the blue, similar to clusters such as NGC 1261, 1851, or
6229 with metallicities near [Fe/H] = -1.3, placing it about 34 kpc
from the Galactic center. We use starcounts of the bright stars to measure the
core radius, half-mass radius, and central concentration of the cluster. Its
integrated luminosity is M_V = -7.9, making it clearly brighter and more
massive than most other clusters in the outer halo.Comment: 25 pages, aastex, with 8 postscript figures; accepted for publication
in AJ, September 1997. Also available by e-mail from
[email protected]. Please consult Harris directly for (big)
postscript files of Figures 1a,b (the images of the cluster
The Australian Incident Monitoring Study in Intensive Care: AIMS-ICU. The development and evaluation of an incident reporting system in intensive care
Publisher's copy made available with the permission of the publisher © 1996 Australian Society of AnaesthetistsIntensive care units are complex, dynamic patient management environments. Incidents and accidents can be caused by human error, by problems inherent in complex systems, or by a combination of these. Study objectives were to develop and evaluate an incident reporting system. A report form was designed eliciting a description of the incident, contextual information and contributing factors. Staff group sessions using open-ended questions, observations in the workplace and a review of earlier narratives were used to develop the report form. Three intensive care units participated in a two-month evaluation study. Feedback questionnaires were used to assess staff attitudes and understanding, project design and organization. These demonstrated a positive attitude and good understanding by more than 90% participants. Errors in communication, technique, problem recognition and charting were the predisposing factors most commonly chosen in the 128 incidents reported. It was concluded that incident monitoring may be a suitable technique for improving patient safety in intensive care.U. Beckman, L.F. West, G.J. Groombridge, I. Baldwin, G.K. Hart, D.G. Clayton, R.K. Webb, W.B. Runcima
The Density Spike in Cosmic-Ray-Modified Shocks: Formation, Evolution, and Instability
We examine the formation and evolution of the density enhancement (density
spike) that appears downstream of strong, cosmic-ray-modified shocks. This
feature results from temporary overcompression of the flow by the combined
cosmic-ray shock precursor/gas subshock. Formation of the density spike is
expected whenever shock modification by cosmic-ray pressure increases strongly.
That occurence may be anticipated for newly generated strong shocks or for
cosmic-ray-modified shocks encountering a region of higher external density,
for example. The predicted mass density within the spike increases with the
shock Mach number and with shocks more dominated by cosmic-ray pressure. We
find this spike to be linearly unstable under a modified Rayleigh-Taylor
instability criterion at the early stage of its formation. We confirm this
instability numerically using two independent codes based on the two-fluid
model for cosmic-ray transport. These two-dimensional simulations show that the
instability grows impulsively at early stages and then slows down as the
gradients of total pressure and gas density decrease. Observational discovery
of this unstable density spike behind shocks, possibly through radio emission
enhanced by the amplified magnetic fields would provide evidence for the
existence of strongly cosmic-ray modified shock structures.Comment: 26 pages in Latex and 6 figures. Accepted to Ap
- âŠ