43 research outputs found

    Evaluating the effectiveness and cost effectiveness of the ‘strengthening families, strengthening communities’ group-based parenting programme: study protocol and initial insights

    Get PDF
    Background: Up to 20% of UK children experience socio-emotional difficulties which can have serious implications for themselves, their families and society. Stark socioeconomic and ethnic inequalities in children’s well-being exist. Supporting parents to develop effective parenting skills is an important preventive strategy in reducing inequalities. Parenting interventions have been developed, which aim to reduce the severity and impact of these difficulties. However, most parenting interventions in the UK focus on early childhood (0–10 years) and often fail to engage families from ethnic minority groups and those living in poverty. Strengthening Families, Strengthening Communities (SFSC) is a parenting programme designed by the Race Equality Foundation, which aims to address this gap. Evidence from preliminary studies is encouraging, but no randomised controlled trials have been undertaken so far. Methods/design: The TOGETHER study is a multi-centre, waiting list controlled, randomised trial, which aims to test the effectiveness of SFSC in families with children aged 3–18 across seven urban areas in England with ethnically and socially diverse populations. The primary outcome is parental mental well-being (assessed by the Warwick-Edinburgh Mental Well-Being Scale). Secondary outcomes include child socio-emotional well-being, parenting practices, family relationships, self-efficacy, quality of life, and community engagement. Outcomes are assessed at baseline, post intervention, three- and six-months post intervention. Cost effectiveness will be estimated using a cost-utility analysis and cost-consequences analysis. The study is conducted in two stages. Stage 1 comprised a 6-month internal pilot to determine the feasibility of the trial. A set of progression criteria were developed to determine whether the stage 2 main trial should proceed. An embedded process evaluation will assess the fidelity and acceptability of the intervention. Discussion: In this paper we provide details of the study protocol for this trial. We also describe challenges to implementing the protocol and how these were addressed. Once completed, if beneficial effects on both parental and child outcomes are found, the impact, both immediate and longer term, are potentially significant. As the intervention focuses on supporting families living in poverty and those from minority ethnic communities, the intervention should also ultimately have a beneficial impact on reducing health inequalities. Trial registration: Prospectively registered Randomised Controlled Trial ISRCTN15194500

    Increased Asymmetric and Multi-Daughter Cell Division in Mechanically Confined Microenvironments

    Get PDF
    As the microenvironment of a cell changes, associated mechanical cues may lead to changes in biochemical signaling and inherently mechanical processes such as mitosis. Here we explore the effects of confined mechanical environments on cellular responses during mitosis. Previously, effects of mechanical confinement have been difficult to optically observe in three-dimensional and in vivo systems. To address this challenge, we present a novel microfluidic perfusion culture system that allows controllable variation in the level of confinement in a single axis allowing observation of cell growth and division at the single-cell level. The device is capable of creating precise confinement conditions in the vertical direction varying from high (3 µm) to low (7 µm) confinement while also varying the substrate stiffness (E = 130 kPa and 1 MPa). The Human cervical carcinoma (HeLa) model with a known 3N+ karyotype was used for this study. For this cell line, we observe that mechanically confined cell cycles resulted in stressed cell divisions: (i) delayed mitosis, (ii) multi- daughter mitosis events (from 3 up to 5 daughter cells), (iii) unevenly sized daughter cells, and (iv) induction of cell death. In the highest confined conditions, the frequency of divisions producing more than two progeny was increased an astounding 50-fold from unconfined environments, representing about one half of all successful mitotic events. Notably, the majority of daughter cells resulting from multipolar divisions were viable after cytokinesis and, perhaps suggesting another regulatory checkpoint in the cell cycle, were in some cases observed to re-fuse with neighboring cells post-cytokinesis. The higher instances of abnormal mitosis that we report in confined mechanically stiff spaces, may lead to increased rates of abnormal, viable, cells in the population. This work provides support to a hypothesis that environmental mechanical cues influences structural mechanisms of mitosis such as geometric orientation of the mitotic plane or planes

    Sequential Array Cytometry: Multi-Parameter Imaging with a Single Fluorescent Channel

    Get PDF
    Heterogeneity within the human population and within diseased tissues necessitates a personalized medicine approach to diagnostics and the treatment of diseases. Functional assays at the single-cell level can contribute to uncovering heterogeneity and ultimately assist in improved treatment decisions based on the presence of outlier cells. We aim to develop a platform for high-throughput, single-cell-based assays using well-characterized hydrodynamic cell isolation arrays which allow for precise cell and fluid handling. Here, we demonstrate the ability to extract spatial and temporal information about several intracellular components using a single fluorescent channel, eliminating the problem of overlapping fluorescence emission spectra. Integrated with imaging technologies such as wide field-of-view lens-free fluorescent imaging, fiber-optic array scanning technology, and microlens arrays, use of a single fluorescent channel will reduce the cost of reagents and optical components. Specifically, we sequentially stain hydrodynamically trapped cells with three biochemical labels all sharing the same fluorescence excitation and emission spectrum. These markers allow us to analyze the amount of DNA, and compare nucleus-to-cytoplasm ratio, as well as glycosylation of surface proteins. By imaging cells in real-time we enable measurements of temporal localization of cellular components and intracellular reaction kinetics, the latter is used as a measurement of multi-drug resistance. Demonstrating the efficacy of this single-cell analysis platform is the first step in designing and implementing more complete assays, aimed toward improving diagnosis and personalized treatments to complex diseases

    Label-free cell separation and sorting in microfluidic systems

    Get PDF
    Cell separation and sorting are essential steps in cell biology research and in many diagnostic and therapeutic methods. Recently, there has been interest in methods which avoid the use of biochemical labels; numerous intrinsic biomarkers have been explored to identify cells including size, electrical polarizability, and hydrodynamic properties. This review highlights microfluidic techniques used for label-free discrimination and fractionation of cell populations. Microfluidic systems have been adopted to precisely handle single cells and interface with other tools for biochemical analysis. We analyzed many of these techniques, detailing their mode of separation, while concentrating on recent developments and evaluating their prospects for application. Furthermore, this was done from a perspective where inertial effects are considered important and general performance metrics were proposed which would ease comparison of reported technologies. Lastly, we assess the current state of these technologies and suggest directions which may make them more accessible

    Accelerated wound healing by injectable microporous gel scaffolds assembled from annealed building blocks

    No full text
    Injectable hydrogels can provide a scaffold for in situ tissue regrowth and regeneration, yet gel degradation before tissue reformation limits the gels' ability to provide physical support. Here, we show that this shortcoming can be circumvented through an injectable, interconnected microporous gel scaffold assembled from annealed microgel building blocks whose chemical and physical properties can be tailored by microfluidic fabrication. In vitro, cells incorporated during scaffold formation proliferated and formed extensive three-dimensional networks within 48 h. In vivo, the scaffolds facilitated cell migration that resulted in rapid cutaneous-tissue regeneration and tissue-structure formation within five days. The combination of microporosity and injectability of these annealed gel scaffolds should enable novel routes to tissue regeneration and formation in vivo

    Sugar Additives Improve Signal Fidelity for Implementing Two-Phase Resorufin-Based Enzyme Immunoassays

    No full text
    Enzymatic signal amplification based on fluorogenic substrates is commonly used for immunoassays; however, when transitioning these assays to a digital format in water-in-mineral oil emulsions, such amplification methods have been limited by the leakage of small reporting fluorescent probes. In the present study, we used a microfluidic system to study leakage from aqueous droplets in a controlled manner and confirmed that the leakage of fluorescent resorufin derivatives is mostly due to the presence of the lipophilic surfactant Span80, which is commonly used to preserve emulsion stability. This leakage can be overcome by the addition of specific sugars that most strongly interfered with the surfactants ability to form micelles in water. The application of the microfluidic system to the quantitative analysis of droplets and the implementation of the described sugar additives would allow for alternatives to fluorinated surfactant-based platforms and improve the signal fidelity in enzyme immunoassays implemented through multiphase microfluidics
    corecore