976 research outputs found

    Mass growth and mergers: direct observations of the luminosity function of LRG satellite galaxies out to z=0.7 from SDSS and BOSS images

    Get PDF
    We present a statistical study of the luminosity functions of galaxies surrounding luminous red galaxies (LRGs) at average redshifts =0.34 and =0.65. The luminosity functions are derived by extracting source photometry around more than 40,000 LRGs and subtracting foreground and background contamination using randomly selected control fields. We show that at both studied redshifts the average luminosity functions of the LRGs and their satellite galaxies are poorly fitted by a Schechter function due to a luminosity gap between the centrals and their most luminous satellites. We utilize a two-component fit of a Schechter function plus a log-normal distribution to demonstrate that LRGs are typically brighter than their most luminous satellite by roughly 1.3 magnitudes. This luminosity gap implies that interactions within LRG environments are typically restricted to minor mergers with mass ratios of 1:4 or lower. The luminosity functions further imply that roughly 35% of the mass in the environment is locked in the LRG itself, supporting the idea that mass growth through major mergers within the environment is unlikely. Lastly, we show that the luminosity gap may be at least partially explained by the selection of LRGs as the gap can be reproduced by sparsely sampling a Schechter function. In that case LRGs may represent only a small fraction of central galaxies in similar mass halos.Comment: ApJ accepted versio

    The Cross-correlation of MgII Absorption and Galaxies in BOSS

    Full text link
    We present a measurement of the cross-correlation of MgII absorption and massive galaxies, using the DR11 main galaxy sample of the Baryon Oscillation Spectroscopic Survey of SDSS-III (CMASS galaxies), and the DR7 quasar spectra of SDSS-II. The cross-correlation is measured by stacking quasar absorption spectra shifted to the redshift of galaxies that are within a certain impact parameter bin of the quasar, after dividing by a quasar continuum model. This results in an average MgII equivalent width as a function of impact parameter from a galaxy, ranging from 50 kpc to more than 10 Mpc in proper units, which includes all MgII absorbers. We show that special care needs to be taken to use an unbiased quasar continuum estimator, to avoid systematic errors in the measurement of the mean stacked MgII equivalent width. The measured cross-correlation follows the expected shape of the galaxy correlation function, although measurement errors are large. We use the cross-correlation amplitude to derive the bias factor of MgII absorbers, finding bMgII = 2.33 \pm? 0.19, where the error accounts only for the statistical uncertainty in measuring the mean equivalent width. This bias factor is larger than that obtained in previous studies and may be affected by modeling uncertainties that we discuss, but if correct it suggests that MgII absorbers at redshift z \simeq 0:5 are spatially distributed on large scales similarly to the CMASS galaxies in BOSS. Keywords: galaxies: haloes, galaxies: formation, quasars: absorption lines, large-scale structure of universeComment: Accepted for publication to MNRAS. Accepted 2014 December 12. Received 2014 November 29; in original form 2014 February

    Plato on Well-Being

    Get PDF
    Plato's dialogues use several terms for the concept of well-being, which concept plays a central ethical role as the ultimate goal for action and a central political role as the proper aim for states. But the dialogues also reveal sharp debate about what human well-being is. I argue that they endorse a Socratic conception of well-being as virtuous activity, by considering and rejecting several alternatives, including an ordinary conception that lists a variety of goods, a Protagorean conception that identifies one's well-being with what appears one to be one's well-being, and hedonistic conceptions

    Antibiotic-resistant Escherichia Coli from Retail Poultry Meat with Different Antibiotic Use Claims

    Get PDF
    Background We sought to determine if the prevalence of antibiotic-resistant Escherichia coli differed across retail poultry products and among major production categories, including organic, “raised without antibiotics”, and conventional. Results We collected all available brands of retail chicken and turkey—including conventional, “raised without antibiotic”, and organic products—every two weeks from January to December 2012. In total, E. coli was recovered from 91% of 546 turkey products tested and 88% of 1367 chicken products tested. The proportion of samples contaminated with E. coli was similar across all three production categories. Resistance prevalence varied by meat type and was highest among E. coli isolates from turkey for the majority of antibiotics tested. In general, production category had little effect on resistance prevalence among E. coli isolates from chicken, although resistance to gentamicin and multidrug resistance did vary. In contrast, resistance prevalence was significantly higher for 6 of the antibiotics tested—and multidrug resistance—among isolates from conventional turkey products when compared to those labelled organic or “raised without antibiotics”. E. coli isolates from chicken varied strongly in resistance prevalence among different brands within each production category. Conclusion The high prevalence of resistance among E. coli isolates from conventionally-raised turkey meat suggests greater antimicrobial use in conventional turkey production as compared to “raised without antibiotics” and organic systems. However, among E. coli from chicken meat, resistance prevalence was more strongly linked to brand than to production category, which could be caused by brand-level differences during production and/or processing, including variations in antimicrobial use

    A search for ortho-benzyne (o-C6H4) in CRL 618

    Full text link
    Polycyclic aromatic hydrocarbons (PAHs) have been proposed as potential carriers of the unidentified infrared bands (UIRs) and the diffuse interstellar bands (DIBs). PAHs are not likely to form by gas-phase or solid-state interstellar chemistry, but rather might be produced in the outflows of carbon-rich evolved stars. PAHs could form from acetylene addition to the phenyl radical (C6H5), which is closely chemically related to benzene (C6H6) and ortho-benzyne (o-C6H4). To date, circumstellar chemical models have been limited to only a partial treatment of benzene-related chemistry, and so the expected abundances of these species are unclear. A detection of benzene has been reported in the envelope of the proto-planetary nebula (PPN) CRL 618, but no other benzene-related species has been detected in this or any other source. The spectrum of o-C6H4 is significantly simpler and stronger than that of C6H5, and so we conducted deep Ku-, K- and Q-band searches for o-C6H4 with the Green Bank Telescope. No transitions were detected, but an upper limit on the column density of 8.4x10^13 cm^-2 has been determined. This limit can be used to constrain chemical models of PPNe, and this study illustrates the need for complete revision of these models to include the full set of benzene-related chemistry.Comment: 13 pages, 4 figures, to be published in The Astrophysical Journal Letter

    Improved background subtraction for the Sloan Digital Sky Survey images

    Full text link
    We describe a procedure for background subtracting Sloan Digital Sky Survey (SDSS) imaging that improves the resulting detection and photometry of large galaxies on the sky. Within each SDSS drift scan run, we mask out detected sources and then fit a smooth function to the variation of the sky background. This procedure has been applied to all SDSS-III Data Release 8 images, and the results are available as part of that data set. We have tested the effect of our background subtraction on the photometry of large galaxies by inserting fake galaxies into the raw pixels, reanalyzing the data, and measuring them after background subtraction. Our technique results in no size-dependent bias in galaxy fluxes up to half-light radii of 100 arcsec; in contrast, for galaxies of that size the standard SDSS photometric catalog underestimates fluxes by about 1.5 mag. Our results represent a substantial improvement over the standard SDSS catalog results and should form the basis of any analysis of nearby galaxies using the SDSS imaging data.Comment: accepted by the Astronomical Journa

    Energy Monitoring and Management System

    Get PDF
    The Energy Monitoring and Management System facilitates access to electric power in regions with limited energy by increasing energy conservation and education. The solution consists of a meter which allocates a configurable daily energy limit per facility, and a display that provides practical information to the user including reporting how much energy they have used and how much they have left before their power is automatically cut off until the next day. The current version of the system has successfully been installed in multiple facilities in Burkina Faso and Zimbabwe, however software errors are preventing the system from meeting client specifications. To remedy this issue, our team has performed various updates to the software of the meters in preparation in order to distribute a software update to our client. A testing procedure has been implemented to verify functional operation. Mechanical performance issues were also reported about the installed meters. Hardware revisions and design updates have been implemented to resolve the issues. This presentation will detail the steps made to debug module programming and revise hardware design.https://mosaic.messiah.edu/engr2020/1006/thumbnail.jp

    Characterizing unknown systematics in large scale structure surveys

    Get PDF
    Photometric large scale structure (LSS) surveys probe the largest volumes in the Universe, but are inevitably limited by systematic uncertainties. Imperfect photometric calibration leads to biases in our measurements of the density fields of LSS tracers such as galaxies and quasars, and as a result in cosmological parameter estimation. Earlier studies have proposed using cross-correlations between different redshift slices or cross-correlations between different surveys to reduce the effects of such systematics. In this paper we develop a method to characterize unknown systematics. We demonstrate that while we do not have sufficient information to correct for unknown systematics in the data, we can obtain an estimate of their magnitude. We define a parameter to estimate contamination from unknown systematics using cross-correlations between different redshift slices and propose discarding bins in the angular power spectrum that lie outside a certain contamination tolerance level. We show that this method improves estimates of the bias using simulated data and further apply it to photometric luminous red galaxies in the Sloan Digital Sky Survey as a case study.Comment: 24 pages, 6 figures; Expanded discussion of results, added figure 2; Version to be published in JCA

    The Blue Tip of the Stellar Locus: Measuring Reddening with the SDSS

    Full text link
    We present measurements of reddening due to dust using the colors of stars in the Sloan Digital Sky Survey (SDSS). We measure the color of main sequence turn-off stars by finding the "blue tip" of the stellar locus: the prominent blue edge in the distribution of stellar colors. The method is sensitive to color changes of order 18, 12, 7, and 8 mmag of reddening in the colors u-g, g-r, r-i, and i-z, respectively, in regions measuring 90' by 14'. We present maps of the blue tip colors in each of these bands over the entire SDSS footprint, including the new dusty southern Galactic cap data provided by the SDSS-III. The results disfavor the best fit O'Donnell (1994) and Cardelli et al. (1989) reddening laws, but are well described by a Fitzpatrick (1999) reddening law with R_V = 3.1. The SFD dust map is found to trace the dust well, but overestimates reddening by factors of 1.4, 1.0, 1.2, and 1.4 in u-g, g-r, r-i, and i-z, largely due to the adopted reddening law. In select dusty regions of the sky, we find evidence for problems in the SFD temperature correction. A dust map normalization difference of 15% between the Galactic north and south sky may be due to these dust temperature errors.Comment: 18 pages, 22 figure
    • …
    corecore