48 research outputs found

    Comparison of base-line and chemical-induced transcriptomic responses in HepaRG and RPTEC/TERT1 cells using TempO-Seq

    Get PDF
    The utilisation of genome-wide transcriptomics has played a pivotal role in advancing the field of toxicology, allowing the mapping of transcriptional signatures to chemical exposures. These activities have uncovered several transcriptionally regulated pathways that can be utilised for assessing the perturbation impact of a chemical and also the identification of toxic mode of action. However, current transcriptomic platforms are not very amenable to high-throughput workflows due to, high cost, complexities in sample preparation and relatively complex bioinformatic analysis. Thus, transcriptomic investigations are usually limited in dose and time dimensions and are, therefore, not optimal for implementation in risk assessment workflows. In this study, we investigated a new cost-effective, transcriptomic assay, TempO-Seq, which alleviates the aforementioned limitations. This technique was evaluated in a 6-compound screen, utilising differentiated kidney (RPTEC/TERT1) and liver (HepaRG) cells and compared to non-transcriptomic label-free sensitive endpoints of chemical-induced disturbances, namely phase contrast morphology, xCELLigence and glycolysis. Non-proliferating cell monolayers were exposed to six sub-lethal concentrations of each compound for 24 h. The results show that utilising a 2839 gene panel, it is possible to discriminate basal tissue-specific signatures, generate dose-response relationships and to discriminate compound-specific and cell type-specific responses. This study also reiterates previous findings that chemical-induced transcriptomic alterations occur prior to cytotoxicity and that transcriptomics provides in depth mechanistic information of the effects of chemicals on cellular transcriptional responses. TempO-Seq is a robust transcriptomic platform that is well suited for in vitro toxicity experiments.Horizon 2020(H2020)68100

    Metamorphosis of Heterostructured Surface-Mounted Metal–Organic Frameworks Yielding Record Oxygen Evolution Mass Activities

    Get PDF
    Materials derived from surface-mounted metal–organic frameworks (SURMOFs) are promising electrocatalysts for the oxygen evolution reaction (OER). A series of mixed-metal, heterostructured SURMOFs is fabricated by the facile layer-by-layer deposition method. The obtained materials reveal record-high electrocatalyst mass activities of ≈2.90 kA g1^{-1} at an overpotential of 300 mV in 0.1 m KOH, superior to the benchmarking precious and nonprecious metal electrocatalysts. This property is assigned to the particular in situ self-reconstruction and self-activation of the SURMOFs during the immersion and the electrochemical treatment in alkaline aqueous electrolytes, which allows for the generation of NiFe (oxy)hydroxide electrocatalyst materials of specific morphology and microstructure

    Expanding LAGLIDADG endonuclease scaffold diversity by rapidly surveying evolutionary sequence space

    Get PDF
    LAGLIDADG homing endonucleases (LHEs) are a family of highly specific DNA endonucleases capable of recognizing target sequences ∼20 bp in length, thus drawing intense interest for their potential academic, biotechnological and clinical applications. Methods for rational design of LHEs to cleave desired target sites are presently limited by a small number of high-quality native LHEs to serve as scaffolds for protein engineering—many are unsatisfactory for gene targeting applications. One strategy to address such limitations is to identify close homologs of existing LHEs possessing superior biophysical or catalytic properties. To test this concept, we searched public sequence databases to identify putative LHE open reading frames homologous to the LHE I-AniI and used a DNA binding and cleavage assay using yeast surface display to rapidly survey a subset of the predicted proteins. These proteins exhibited a range of capacities for surface expression and also displayed locally altered binding and cleavage specificities with a range of in vivo cleavage activities. Of these enzymes, I-HjeMI demonstrated the greatest activity in vivo and was readily crystallizable, allowing a comparative structural analysis. Taken together, our results suggest that even highly homologous LHEs offer a readily accessible resource of related scaffolds that display diverse biochemical properties for biotechnological applications

    A label-free, impedance-based real time assay to identify drug-induced toxicities and differentiate cytostatic from cytotoxic effects

    No full text
    Cell-based assays are key tools in drug safety assessment. However, they usually provide only limited information about time-kinetics of a toxic effect and implementing multiple measurements is often complex. To overcome these issues we established an impedance-based approach which is able to differentiate cytostatic from cytotoxic drugs by recording time-kinetics of compound-effects on cells. NIH 3T3 fibroblasts were seeded on xCELLigence E-plates and impedance was continuously measured over 5 days. The obtained results reflected cytotoxicity and cell proliferation, as confirmed by neutral red uptake in vitro. Based on known toxicants, we established an algorithm able to discriminate cytostatic, cytotoxic and non-toxic compounds based on the shape of the impedance curves. Analyzing impedance curve patterns of additional 37 compounds allowed the identification and differentiation of these distinct effects as results correlated well with previous in vivo findings. We show that impedance-based real-time cell analysis is a convenient tool to characterize and discriminate effects of compounds on cells in a time-dependent and label-free manner. The presented impedance assay could be used to further characterize toxicities observed in vivo or in vitro. Due to the ease of performance it may also be a suitable screening tool. 2012 Elsevier Lt
    corecore