3,263 research outputs found

    Rheological properties of saliva substitutes containing mucin, carboxymethylcellulose or polyethylenoxide

    Get PDF
    Apparent viscosities at different shear rates were measured for 3 types of saliva substitutes: (a) mucin-containing saliva; (b) substitutes based upon carboxymethylcellulose (CMC), and (c) solution of polyethylenoxide (PEO). The apparent viscosities were compared with those of human whole saliva. Human whole saliva and mucin-containing saliva substitutes appeared to be similar in their rheological properties. Both types of solution are viscoelastic solutions and adjust their apparent viscosities to their biological functions. Preparations containing CMC or PEO are non-Newtonian liquids. From this study it is concluded that mucin-containing saliva substitutes appear to be the best substitutes for natural saliva, as far as rheological properties are concerned

    Enumeration of RNA structures by Matrix Models

    Full text link
    We enumerate the number of RNA contact structures according to their genus, i.e. the topological character of their pseudoknots. By using a recently proposed matrix model formulation for the RNA folding problem, we obtain exact results for the simple case of an RNA molecule with an infinitely flexible backbone, in which any arbitrary pair of bases is allowed. We analyze the distribution of the genus of pseudoknots as a function of the total number of nucleotides along the phosphate-sugar backbone.Comment: RevTeX, 4 pages, 2 figure

    Model for Folding and Aggregation in RNA Secondary Structures

    Get PDF
    We study the statistical mechanics of RNA secondary structures designed to have an attraction between two different types of structures as a model system for heteropolymer aggregation. The competition between the branching entropy of the secondary structure and the energy gained by pairing drives the RNA to undergo a `temperature independent' second order phase transition from a molten to an aggregated phase'. The aggregated phase thus obtained has a macroscopically large number of contacts between different RNAs. The partition function scaling exponent for this phase is \theta ~ 1/2 and the crossover exponent of the phase transition is \nu ~ 5/3. The relevance of these calculations to the aggregation of biological molecules is discussed.Comment: Revtex, 4 pages; 3 Figures; Final published versio

    Quantification of the differences between quenched and annealed averaging for RNA secondary structures

    Get PDF
    The analytical study of disordered system is usually difficult due to the necessity to perform a quenched average over the disorder. Thus, one may resort to the easier annealed ensemble as an approximation to the quenched system. In the study of RNA secondary structures, we explicitly quantify the deviation of this approximation from the quenched ensemble by looking at the correlations between neighboring bases. This quantified deviation then allows us to propose a constrained annealed ensemble which predicts physical quantities much closer to the results of the quenched ensemble without becoming technically intractable.Comment: 9 pages, 14 figures, submitted to Phys. Rev.

    A New Simulated Annealing Algorithm for the Multiple Sequence Alignment Problem: The approach of Polymers in a Random Media

    Full text link
    We proposed a probabilistic algorithm to solve the Multiple Sequence Alignment problem. The algorithm is a Simulated Annealing (SA) that exploits the representation of the Multiple Alignment between DD sequences as a directed polymer in DD dimensions. Within this representation we can easily track the evolution in the configuration space of the alignment through local moves of low computational cost. At variance with other probabilistic algorithms proposed to solve this problem, our approach allows for the creation and deletion of gaps without extra computational cost. The algorithm was tested aligning proteins from the kinases family. When D=3 the results are consistent with those obtained using a complete algorithm. For D>3D>3 where the complete algorithm fails, we show that our algorithm still converges to reasonable alignments. Moreover, we study the space of solutions obtained and show that depending on the number of sequences aligned the solutions are organized in different ways, suggesting a possible source of errors for progressive algorithms.Comment: 7 pages and 11 figure

    Genetic Correlations in Mutation Processes

    Full text link
    We study the role of phylogenetic trees on correlations in mutation processes. Generally, correlations decay exponentially with the generation number. We find that two distinct regimes of behavior exist. For mutation rates smaller than a critical rate, the underlying tree morphology is almost irrelevant, while mutation rates higher than this critical rate lead to strong tree-dependent correlations. We show analytically that identical critical behavior underlies all multiple point correlations. This behavior generally characterizes branching processes undergoing mutation.Comment: revtex, 8 pages, 2 fig

    Counting, generating and sampling tree alignments

    Get PDF
    Pairwise ordered tree alignment are combinatorial objects that appear in RNA secondary structure comparison. However, the usual representation of tree alignments as supertrees is ambiguous, i.e. two distinct supertrees may induce identical sets of matches between identical pairs of trees. This ambiguity is uninformative, and detrimental to any probabilistic analysis.In this work, we consider tree alignments up to equivalence. Our first result is a precise asymptotic enumeration of tree alignments, obtained from a context-free grammar by mean of basic analytic combinatorics. Our second result focuses on alignments between two given ordered trees SS and TT. By refining our grammar to align specific trees, we obtain a decomposition scheme for the space of alignments, and use it to design an efficient dynamic programming algorithm for sampling alignments under the Gibbs-Boltzmann probability distribution. This generalizes existing tree alignment algorithms, and opens the door for a probabilistic analysis of the space of suboptimal RNA secondary structures alignments.Comment: ALCOB - 3rd International Conference on Algorithms for Computational Biology - 2016, Jun 2016, Trujillo, Spain. 201
    • …
    corecore