3,263 research outputs found
Rheological properties of saliva substitutes containing mucin, carboxymethylcellulose or polyethylenoxide
Apparent viscosities at different shear rates were measured for 3 types of saliva substitutes: (a) mucin-containing saliva; (b) substitutes based upon carboxymethylcellulose (CMC), and (c) solution of polyethylenoxide (PEO). The apparent viscosities were compared with those of human whole saliva. Human whole saliva and mucin-containing saliva substitutes appeared to be similar in their rheological properties. Both types of solution are viscoelastic solutions and adjust their apparent viscosities to their biological functions. Preparations containing CMC or PEO are non-Newtonian liquids. From this study it is concluded that mucin-containing saliva substitutes appear to be the best substitutes for natural saliva, as far as rheological properties are concerned
Enumeration of RNA structures by Matrix Models
We enumerate the number of RNA contact structures according to their genus,
i.e. the topological character of their pseudoknots. By using a recently
proposed matrix model formulation for the RNA folding problem, we obtain exact
results for the simple case of an RNA molecule with an infinitely flexible
backbone, in which any arbitrary pair of bases is allowed. We analyze the
distribution of the genus of pseudoknots as a function of the total number of
nucleotides along the phosphate-sugar backbone.Comment: RevTeX, 4 pages, 2 figure
Model for Folding and Aggregation in RNA Secondary Structures
We study the statistical mechanics of RNA secondary structures designed to
have an attraction between two different types of structures as a model system
for heteropolymer aggregation. The competition between the branching entropy of
the secondary structure and the energy gained by pairing drives the RNA to
undergo a `temperature independent' second order phase transition from a molten
to an aggregated phase'. The aggregated phase thus obtained has a
macroscopically large number of contacts between different RNAs. The partition
function scaling exponent for this phase is \theta ~ 1/2 and the crossover
exponent of the phase transition is \nu ~ 5/3. The relevance of these
calculations to the aggregation of biological molecules is discussed.Comment: Revtex, 4 pages; 3 Figures; Final published versio
Quantification of the differences between quenched and annealed averaging for RNA secondary structures
The analytical study of disordered system is usually difficult due to the
necessity to perform a quenched average over the disorder. Thus, one may resort
to the easier annealed ensemble as an approximation to the quenched system. In
the study of RNA secondary structures, we explicitly quantify the deviation of
this approximation from the quenched ensemble by looking at the correlations
between neighboring bases. This quantified deviation then allows us to propose
a constrained annealed ensemble which predicts physical quantities much closer
to the results of the quenched ensemble without becoming technically
intractable.Comment: 9 pages, 14 figures, submitted to Phys. Rev.
A New Simulated Annealing Algorithm for the Multiple Sequence Alignment Problem: The approach of Polymers in a Random Media
We proposed a probabilistic algorithm to solve the Multiple Sequence
Alignment problem. The algorithm is a Simulated Annealing (SA) that exploits
the representation of the Multiple Alignment between sequences as a
directed polymer in dimensions. Within this representation we can easily
track the evolution in the configuration space of the alignment through local
moves of low computational cost. At variance with other probabilistic
algorithms proposed to solve this problem, our approach allows for the creation
and deletion of gaps without extra computational cost. The algorithm was tested
aligning proteins from the kinases family. When D=3 the results are consistent
with those obtained using a complete algorithm. For where the complete
algorithm fails, we show that our algorithm still converges to reasonable
alignments. Moreover, we study the space of solutions obtained and show that
depending on the number of sequences aligned the solutions are organized in
different ways, suggesting a possible source of errors for progressive
algorithms.Comment: 7 pages and 11 figure
Genetic Correlations in Mutation Processes
We study the role of phylogenetic trees on correlations in mutation
processes. Generally, correlations decay exponentially with the generation
number. We find that two distinct regimes of behavior exist. For mutation rates
smaller than a critical rate, the underlying tree morphology is almost
irrelevant, while mutation rates higher than this critical rate lead to strong
tree-dependent correlations. We show analytically that identical critical
behavior underlies all multiple point correlations. This behavior generally
characterizes branching processes undergoing mutation.Comment: revtex, 8 pages, 2 fig
Counting, generating and sampling tree alignments
Pairwise ordered tree alignment are combinatorial objects that appear in RNA
secondary structure comparison. However, the usual representation of tree
alignments as supertrees is ambiguous, i.e. two distinct supertrees may induce
identical sets of matches between identical pairs of trees. This ambiguity is
uninformative, and detrimental to any probabilistic analysis.In this work, we
consider tree alignments up to equivalence. Our first result is a precise
asymptotic enumeration of tree alignments, obtained from a context-free grammar
by mean of basic analytic combinatorics. Our second result focuses on
alignments between two given ordered trees and . By refining our grammar
to align specific trees, we obtain a decomposition scheme for the space of
alignments, and use it to design an efficient dynamic programming algorithm for
sampling alignments under the Gibbs-Boltzmann probability distribution. This
generalizes existing tree alignment algorithms, and opens the door for a
probabilistic analysis of the space of suboptimal RNA secondary structures
alignments.Comment: ALCOB - 3rd International Conference on Algorithms for Computational
Biology - 2016, Jun 2016, Trujillo, Spain. 201
- …