1,772 research outputs found

    The Corn and Climate Report

    Get PDF
    Summarizes research on climate change and its impact on Midwestern agriculture, how to mitigate its effects, and other issues discussed among weather and climate service providers, agribusiness providers, producers, and state advisors at a 2008 workshop

    Spectral properties of the hierarchical product of graphs

    Get PDF
    The hierarchical product of two graphs represents a natural way to build a larger graph out of two smaller graphs with less regular and therefore more heterogeneous structure than the Cartesian product. Here we study the eigenvalue spectrum of the adjacency matrix of the hierarchical product of two graphs. Introducing a coupling parameter describing the relative contribution of each of the two smaller graphs, we perform an asymptotic analysis for the full spectrum of eigenvalues of the adjacency matrix of the hierarchical product. Specifically, we derive the exact limit points for each eigenvalue in the limits of small and large coupling, as well as the leading-order relaxation to these values in terms of the eigenvalues and eigenvectors of the two smaller graphs. Given its central roll in the structural and dynamical properties of networks, we study in detail the Perron-Frobenius, or largest, eigenvalue. Finally, as an example application we use our theory to predict the epidemic threshold of the Susceptible-Infected-Susceptible model on a hierarchical product of two graphs

    Identifying Codes and Domination in the Product of Graphs

    Get PDF
    An identifying code in a graph is a dominating set that also has the property that the closed neighborhood of each vertex in the graph has a distinct intersection with the set. The minimum cardinality of an identifying code in a graph GG is denoted \gid(G). We consider identifying codes of the direct product Kn×KmK_n \times K_m. In particular, we answer a question of Klav\v{z}ar and show the exact value of \gid(K_n \times K_m). It was recently shown by Gravier, Moncel and Semri that for the Cartesian product of two same-sized cliques \gid(K_n \Box K_n) = \lfloor{\frac{3n}{2}\rfloor}. Letting mn2m \ge n \ge 2 be any integers, we show that \IDCODE(K_n \cartprod K_m) = \max\{2m-n, m + \lfloor n/2 \rfloor\}. Furthermore, we improve upon the bounds for \IDCODE(G \cartprod K_m) and explore the specific case when GG is the Cartesian product of multiple cliques. Given two disjoint copies of a graph GG, denoted G1G^1 and G2G^2, and a permutation π\pi of V(G)V(G), the permutation graph πG\pi G is constructed by joining uV(G1)u \in V(G^1) to π(u)V(G2)\pi(u) \in V(G^2) for all uV(G1)u \in V(G^1). The graph GG is said to be a universal fixer if the domination number of πG\pi G is equal to the domination number of GG for all π\pi of V(G)V(G). In 1999 it was conjectured that the only universal fixers are the edgeless graphs. We prove the conjecture
    corecore