Identifying Codes and Domination in the Product of Graphs

Kirsti Wash
Clemson University, kirstiw@clemson.edu

Follow this and additional works at: https:/ /tigerprints.clemson.edu/all_dissertations
Part of the Mathematics Commons

Recommended Citation

Wash, Kirsti, "Identifying Codes and Domination in the Product of Graphs" (2014). All Dissertations. 1356.
https://tigerprints.clemson.edu/all_dissertations/1356

Identifying Codes and Domination in the Product of Graphs

A Dissertation
Presented to
the Graduate School of
Clemson University
of the Requirements for the Degree
Doctor of Philosophy
Mathematical Sciences
In Partial Fulfillment
Kirsti Anne Wash
May 2014
Accepted by:
Ar. Wayne Goddard, Committee Chair
Dr. Douglas Rall
Dr. Stephen Hedetniemi
Dr. James Brown
Drenen Matthews

Abstract

An identifying code in a graph is a dominating set that also has the property that the closed neighborhood of each vertex in the graph has a distinct intersection with the set. The minimum cardinality of an identifying code in a graph G is denoted $\gamma^{\text {ID }}(G)$. We consider identifying codes of the direct product $K_{n} \times K_{m}$. In particular, we answer a question of Klavžar and show the exact value of $\gamma^{\mathrm{ID}}\left(K_{n} \times K_{m}\right)$. It was recently shown by Gravier, Moncel and Semri that for the Cartesian product of two same-sized cliques $\gamma^{\mathrm{ID}}\left(K_{n} \square K_{n}\right)=\left\lfloor\frac{3 n}{2}\right\rfloor$. Letting $m \geq n \geq 2$ be any integers, we show that $\gamma^{\mathrm{ID}}\left(K_{n} \square K_{m}\right)=\max \{2 m-n, m+\lfloor n / 2\rfloor\}$. Furthermore, we improve upon the bounds for $\gamma^{\mathrm{ID}}\left(G \square K_{m}\right)$ and explore the specific case when G is the Cartesian product of multiple cliques.

Given two disjoint copies of a graph G, denoted G^{1} and G^{2}, and a permutation π of $V(G)$, the permutation graph πG is constructed by joining $u \in V\left(G^{1}\right)$ to $\pi(u) \in V\left(G^{2}\right)$ for all $u \in V\left(G^{1}\right)$. The graph G is said to be a universal fixer if the domination number of πG is equal to the domination number of G for all π of $V(G)$. In 1999 it was conjectured that the only universal fixers are the edgeless graphs. We prove the conjecture.

Acknowledgments

I am very thankful for the many people who have helped me along the way. First, I am eternally grateful to Doug Rall for agreeing to work with me, despite all the red tape, and for the many hours we spent poring through the details. I am extremely grateful to Wayne Goddard for continually pushing me to work harder than I thought humanly possible. I would also like to thank Steve Hedetniemi for his wonderful advice and suggestions over the past four years.

Table of Contents

Title Page i
Abstract ii
Acknowledgments iii
List of Tables v
List of Figures vi
1 Introduction 1
1.1 Definitions 1
2 Background 3
2.1 Cartesian Product 3
2.2 Direct Product 8
2.3 Generalized Prisms 10
2.4 Identifying Codes 10
3 Identifying codes of the direct product of two cliques 15
3.1 Introduction 15
3.2 Main Results 16
3.3 Preliminary Properties 17
3.4 Proofs of Main Results 22
4 ID Codes in Cartesian Products of Cliques 34
4.1 Introduction 34
4.2 Two Cliques 34
4.3 Equal Cliques 38
4.4 Lower Bound For Three Equal Cliques 39
4.5 Unequal Cliques 40
5 Edgeless graphs are the only universal fixers 43
5.1 Introduction 43
5.2 Known Results 45
5.3 Proof of Theorem 41 46
Bibliography 55

List of Tables

$3.1 \gamma^{\mathrm{ID}}\left(K_{n} \times K_{m}\right)$ for small n and m. 16

List of Figures

$2.1 \quad P_{3} \square K_{3}$ 3
$2.2 \quad Q_{3}$ 4
$2.3 \quad K_{2} \times K_{3}$ 8
2.4 Example of a minimum identifying code 11
2.5 Examples of locating-dominating sets and ID codes in C_{5} 14
3.1 Examples of ID codes when $n+m \equiv 0,2(\bmod 3)$ 26
3.2 Several ID codes when $n+m \equiv 1(\bmod 3), m \neq 2 n-5$ 33
$5.1 \alpha G$ where D is a symmetric γ-set that nontrivially intersects every even symmetric γ-set of G 47
5.2 Specific case when $m=3$ and $k=4$ 51
5.3 Specific case when $\left|T \cap X_{1}\right|=3$ 53

Chapter 1

Introduction

Identifying codes and domination have several applications. For example, suppose we want to install motion sensors for a security system in a particular building. In order to guarantee that an intruder is detected no matter which room he enters, we would need to install the sensors in such a way so that each room either contains a sensor or shares a doorway with a room that contains a sensor. Additionally, we may want to require that our security system gives us the specific room that the intruder has entered. In either scenario, minimizing the cost of these sensors is important. Therefore, if we consider the graph G that represents the layout of our building, in the first scenario we seek a dominating set of G, and in the second scenario we seek an identifying code of G. The focus of this thesis is in the area of domination and identifying codes in graph products.

This thesis is organized as follows. In Section 1.1, we give some standard definitions and terminology. In Chapter 2, we give background information for the particular graph products that we study, as well as previous results regarding identifying codes. Chapter 3 is dedicated to identifying codes in the direct product of graphs and Chapter 4 focuses on identifying codes in the Cartesian product of graphs. Chapter 5 focuses on the domination number of a constructed graph which is not necessarily a graph product, but similar to the Cartesian product.

1.1 Definitions

A simple, undirected graph G consists of a finite non-empty set of vertices $V(G)$ and a finite set of edges $E(G)$ which are unordered pairs (u, v) of distinct vertices of G, commonly written $u v$.

If $u v \in E(G)$, we say that u is adjacent to v. We say $|V(G)|$ is the order of G.
Given a vertex $x \in V(G)$, we let $N(x)$ denote the open neighborhood of x, that is, the set of vertices adjacent to x. If x has no neighbors, then we say x is isolated. The closed neighborhood of x is $N[x]=N(x) \cup\{x\}$. For $S \subseteq V(G)$, the open neighborhood of S is $N(S)=\cup_{v \in S} N(v)$. Similarly, the closed neighborhood of S is $N[S]=N(S) \cup S$. Given a graph G and $x \in V(G)$, the degree of x is defined to be $\operatorname{deg}(x)=|N(x)|$. The maximum degree of G is defined to be $\Delta(G)=\max _{v \in V(G)} \operatorname{deg}(v)$. If for some constant $r \in \mathbb{N}, \operatorname{deg}(v)=r$ for all $v \in V(G)$, we say that G is r-regular. A complete graph of order n, denoted K_{n}, is such that every pair of vertices is adjacent. Thus, K_{n} is $(n-1)$-regular. We will denote the graph consisting of n isolated vertices as $\overline{K_{n}}$.

The path P_{n} is the graph whose vertices are $v_{1}, v_{2}, \ldots, v_{n}$ and $E\left(P_{n}\right)=\left\{v_{i} v_{i+1} \mid 1 \leq i \leq\right.$ $n-1\}$. The length of a path is the number of edges in the path. The cycle C_{n} is the graph whose vertices are $v_{1}, v_{2}, \ldots, v_{n}$ and $E\left(C_{n}\right)=E\left(P_{n}\right) \cup\left\{v_{1} v_{n}\right\}$. The distance between two vertices u and v, denoted $d_{G}(u, v)$, is the length of a shortest path between u and v.

Given a graph G, a graph H is a subgraph of G if $V(H) \subseteq V(G)$ and $E(H) \subseteq E(G)$. If a subgraph H of G is such that for every pair of vertices $u, v \in V(H)$ it is the case that $u v \in E(H)$ if and only if $u v \in E(G)$, then H is an induced subgraph of G. A clique is a complete subgraph of a given graph.

Let G and H be any two graphs. We say that G and H are isomorphic, and write $G \cong H$, if there exists a bijection $\phi: V(G) \rightarrow V(H)$ where $x y \in E(G)$ if and only if $\phi(x) \phi(y) \in E(H)$ for all $x, y \in V(G)$. Such a map ϕ is an isomorphism. An automorphism of G is an isomorphism from G to itself. We do not normally distinguish between isomorphic graphs. Thus, it is standard to write $G=H$ rather than $G \cong H$. We say that G is symmetric if given any two pairs of adjacent vertices $u_{1} v_{1}$ and $u_{2} v_{2}$, there is an automorphism $\phi: V(G) \rightarrow V(G)$ such that $\phi\left(u_{1}\right)=u_{2}$ and $\phi\left(v_{1}\right)=v_{2}$.

When analyzing an algorithm, we will use the following notation. Suppose $f(x)$ and $g(x)$ are two functions defined on some subset of \mathbb{R}. We write $f(x)=O(g(x))$ if and only if there exists constants N and C such that $|f(x)| \leq C|g(x)|$ for all $x>N$. We write $f(x)=\Theta(g(x))$ if and only if $f(x)=O(g(x))$ and $g(x)=O(f(x))$. Additionally, we write $f(x)=o(g(x))$ if and only if for every $C>0$ there exists a real number N such that for all $x>N$ we have $|f(x)|<C|g(x)|$.

Chapter 2

Background

2.1 Cartesian Product

Given two graphs G and H, the Cartesian product of G and H, denoted $G \square H$, is defined to be the graph with vertex set $V(G) \times V(H)$, in which two vertices $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ are adjacent if $x_{1}=x_{2}$ and $y_{1} y_{2} \in E(H)$, or $x_{1} x_{2} \in E(G)$ and $y_{1}=y_{2}$. Figure 2.1 depicts the Cartesian product of P_{3} and K_{3}.

Figure 2.1: $P_{3} \square K_{3}$

Given the Cartesian product $G \square H$, we refer to G as the first factor and to H as the second factor. In each illustration of a Cartesian product, we represent the first factor horizontally and the second factor vertically.

2.1.1 Applications

The hypercube, or n-cube, is defined to be the graph Q_{n} whose vertex set consists of all vectors $\left(v_{1}, \ldots, v_{n}\right) \in\{0,1\}^{n}$, in which two vertices are adjacent if and only if they differ in precisely one coordinate. Figure 2.2 illustrates Q_{3}, which is isomorphic to $K_{2} \square K_{2} \square K_{2}$.

Figure 2.2: Q_{3}

This particular class of Cartesian products is by far the most widely used in terms of graph products. Notably, the hypercube has been an attractive model for the interconnection network of multicomputer systems due to the fact that the diameter of Q_{n} is n, which is relatively small considering Q_{n} contains 2^{n} vertices. This translates to quick routing time of messages through the network. Moreover, the n-cube is regular and symmetric, which allows for efficiency of algorithm implementation, in that local algorithms work globally.

The grid graphs, or graphs of the form $P_{m} \square P_{n}$, are another class of Cartesian products that have been investigated for decades. Consider the process of Very-Large-Scale integration, or VLSI, which creates integrated circuits by combining thousands of transistors into a single chip. The microprocessor is one example of a VLSI device. Grid graphs model the constraint that within a VLSI layout, wires can only run horizontally and vertically. Thus, routing problems on grid graphs have important applications [30].

In chemical graph theory, the primary goal is to represent a molecule as a graph, and then use graph properties to determine the behavior of the corresponding molecule. Benzenoid graphs represent benzenoid hydrocarbons, which are important components of gasoline, yet have carcinogenic properties. Considering water and soil contamination of this molecule continue to rise, information derived from graph theoretical properties is well received in the chemical community. In 1996, Chepoi [8] showed that benzenoid graphs can be isometrically embedded into the Cartesian product of three trees. This in turn gave rise to a linear time algorithm for computing the Wiener
index [9], or the sum of the distances between all pairs of vertices, for these benzenoid graphs.

2.1.2 Algebraic Structure

Let Γ represent the set of all finite, simple graphs, and \cup represent the disjoint union operation for graphs. We first show that Γ with the operations \cup and \square forms a familiar algebraic structure. The results included in this section are given in the Handbook of Product Graphs [23, pg. 53-54]. We take the time to prove these results as some of the details have been omitted in [23].

Recall that a monoid is a set S, together with a binary operation \cdot, where each of the following is satisfied.
(a) For all $a, b \in S, a \cdot b \in S$. (closure)
(b) For all $a, b, c \in S,(a \cdot b) \cdot c=a \cdot(b \cdot c)$. (associativity)
(c) There exists an element $e \in S$, such that for every $a \in S, e \cdot a=a \cdot e=a$.

In terms of Γ and the graph operation \cup, it is almost immediate that (Γ, \cup) is a monoid. Certainly the disjoint union of two simple, finite graphs is itself a simple, finite graph. Moreover, for any G, H, and K in Γ,

$$
(G \cup H) \cup K=G \cup H \cup K=G \cup(H \cup K)
$$

Finally, note that the identity element in this case is the empty graph, \mathcal{O}. Thus, (Γ, \cup) is a monoid.
We next show that Γ is a monoid with respect to the graph operation \square.

Proposition 1. [23] The set of all simple, finite graphs is a monoid under the graph operation Cartesian product.

Proof. Closure is immediate from the definition of Cartesian product. Let G, H, and K be graphs in Γ. We wish to show that $(G \square H) \square K=G \square(H \square K)$. Define

$$
\begin{aligned}
\phi: V(G \square H) \times V(K) & \rightarrow V(G) \times V(H \square K) \\
\phi(((x, y), z)) & =(x,(y, z))
\end{aligned}
$$

for all $x \in V(G), y \in V(H)$, and $z \in V(K)$. Suppose that $\left(\left(x_{1}, y_{1}\right), z_{1}\right)$ is adjacent to $\left(\left(x_{2}, y_{2}\right), z_{2}\right)$
in $(G \square H) \square K$, where $x_{i} \in V(G), y_{i} \in V(H)$, and $z_{i} \in V(K)$ for $i \in\{1,2\}$. It follows that either $\left(x_{1}, y_{1}\right)=\left(x_{2}, y_{2}\right)$ and $z_{1} z_{2} \in E(K)$ or $\left(x_{1}, y_{1}\right)\left(x_{2}, y_{2}\right) \in E(G \square H)$ and $z_{1}=z_{2}$.

1. Suppose that $\left(x_{1}, y_{1}\right)=\left(x_{2}, y_{2}\right)$ and $z_{1} z_{2} \in E(K)$. Thus, $x_{1}=x_{2}, y_{1}=y_{2}$, and $\left(y_{1}, z_{1}\right)$ is adjacent to $\left(y_{2}, z_{2}\right)$ in $H \square K$ since $z_{1} z_{2} \in E(K)$. Furthermore, since $x_{1}=x_{2}$, we know $\left(x_{1},\left(y_{1}, z_{1}\right)\right)$ is adjacent to $\left(x_{2},\left(y_{2}, z_{2}\right)\right)$ in $G \square(H \square K)$.
2. Suppose $z_{1}=z_{2}$ and $\left(x_{1}, y_{1}\right)\left(x_{2}, y_{2}\right) \in E(G \square H)$. This implies that either $x_{1}=x_{2}$ and $y_{1} y_{2} \in E(H)$, or $x_{1} x_{2} \in E(G)$ and $y_{1}=y_{2}$. So assume that $x_{1}=x_{2}$ and $y_{1} y_{2} \in E(H)$. It follows that $\left(y_{1}, z_{1}\right)\left(y_{2}, z_{2}\right) \in E(H \square K)$ since $z_{1}=z_{2}$ and $y_{1} y_{2} \in E(H)$. Thus, $\left(x_{1},\left(y_{1}, z_{1}\right)\right)$ is adjacent to $\left(x_{2},\left(y_{2}, z_{2}\right)\right)$ in $G \square(H \square K)$. A similar argument shows the same conclusion when $x_{1} x_{2} \in E(G)$ and $y_{1}=y_{2}$.

Thus,

$$
\left(\left(x_{1}, y_{1}\right), z_{1}\right)\left(\left(x_{2}, y_{2}\right), z_{2}\right) \in E((G \square H) \square K)
$$

implies

$$
\left(x_{1},\left(y_{1}, z_{1}\right)\right)\left(x_{2},\left(y_{2}, z_{2}\right)\right) \in E(G \square(H \square K))
$$

and we have shown that ϕ is a homomorphism. Clearly, ϕ is onto. We next show that ϕ is injective. Suppose that $\phi\left(\left(\left(x_{1}, y_{1}\right), z_{1}\right)\right)=\phi\left(\left(\left(x_{2}, y_{2}\right), z_{2}\right)\right)$ for some $x_{i} \in V(G), y_{i} \in V(H), z_{i} \in V(K), i \in$ $\{1,2\}$. It follows that $\left(x_{1},\left(y_{1}, z_{1}\right)\right)=\left(x_{2},\left(y_{2}, z_{2}\right)\right)$ if and only if $x_{1}=x_{2}, y_{1}=y_{2}$, and $z_{1}=z_{2}$. Thus, $\left(\left(x_{1}, y_{1}\right), z_{1}\right)=\left(\left(x_{2}, y_{2}\right), z_{2}\right)$ and ϕ is a bijection. So ϕ^{-1} exists and the reverse of the above argument shows that ϕ^{-1} is also a homomorphism. Therefore, associativity holds for any G, H, and K in Γ under \square.

Finally, notice that K_{1}, the graph consisting of a single vertex, is the identity element for Γ underSo (Γ, \square) is, indeed, a monoid.

Recall that a semiring is a set R together with two binary operations, + and \cdot, that satisfies the following.
(a) $(R,+)$ is a commutative monoid,
(b) (R, \cdot) is a monoid,
(c) $a \cdot(b+c)=a \cdot b+a \cdot c$ for every $a, b, c \in R$,
(d) The additive identity 0 annihilates R. That is, for every $a \in R, a \cdot 0=0$.

In the context of Γ with the graph operations \cup and \square, we next show that (Γ, \cup, \square) is a semiring.

Proposition 2. [23] The set of all simple, finite graphs forms a semiring under the graph operations disjoint union and Cartesian product.

Proof. We have already shown that (Γ, \cup) and (Γ, \square) are monoids. Furthermore, given graphs G and $H, G \cup H=H \cup G$. Thus, (Γ, \cup) is a commutative monoid. Next, notice that for any $G \in \Gamma$, $V(G \square \mathcal{O})=\emptyset$. Thus, $G \square \mathcal{O}=\mathcal{O}$.

Finally, let G, H, and K be graphs in Γ and define

$$
\begin{aligned}
\psi: V(G \square(H \cup K)) & \rightarrow V((G \square H) \cup(G \square K)) \\
\phi((x, y)) & =(x, y)
\end{aligned}
$$

for all $x \in V(G)$ and $y \in V(H \cup K)$. Suppose for some $x_{1}, x_{2} \in V(G)$ and $y_{1}, y_{2} \in V(H \cup K)$ that $\left(x_{1}, y_{1}\right)$ is adjacent to $\left(x_{2}, y_{2}\right)$ in $G \square(H \cup K)$. This implies that $x_{1}=x_{2}$ and $y_{1} y_{2} \in E(H \cup K)$ or $x_{1} x_{2} \in E(G)$ and $y_{1}=y_{2}$.

1. Suppose that $x_{1}=x_{2}$ and $y_{1} y_{2} \in E(H \cup K)$. It follows that either y_{1} and y_{2} are both vertices of H or both vertices of K. Assume first that $y_{1}, y_{2} \in V(H)$, and $y_{1} y_{2} \in E(H)$. Thus, $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in V(G \square H)$ and $\left(x_{1}, y_{1}\right)\left(x_{2}, y_{2}\right) \in E(G \square H)$. On the other hand, if $y_{1}, y_{2} \in V(K)$, then $\left(x_{1}, y_{1}\right)\left(x_{2}, y_{2}\right) \in E(G \square K)$.
2. Suppose that $x_{1} x_{2} \in E(G)$ and $y_{1}=y_{2}$, which implies that $y_{1} \in V(H)$ or $y_{1} \in V(K)$. If $y_{1} \in V(H)$, then $\left(x_{1}, y_{1}\right)\left(x_{2}, y_{2}\right) \in E(G \square H)$. On the other hand, if $y_{1} \in V(K)$, then $\left(x_{1}, y_{1}\right)\left(x, y_{2}\right) \in E(G \square K)$.

Thus, ψ is a homomorphism. It is clear that ψ is a bijection so ψ^{-1} exists. Moreover, the reverse argument shows that ψ^{-1} is a homomorphism as well. Therefore, $G \square(H \cup K)=(G \square H) \cup(G \square K)$, and we conclude that (Γ, \cup, \square) is a semiring.

There are several important implications of Proposition 2. First note that since (Γ, \square) is a monoid, associativity allows us to drop the parantheses when taking the product of at least three graphs. That is, we may use the notation $G \square H \square K$ to denote $(G \square H) \square K$ and $G \square(H \square K)$, since these two graphs are isomorphic. Furthermore, notice that if we define $f: V(G \square H) \rightarrow V(H \square G)$ as
$f\left(\left(x_{1}, y_{1}\right)\right)=\left(y_{1}, x_{1}\right)$, then f is an isomorphism. This implies that (Γ, \square) is a commutative monoid. In Chapter 4, we consider graphs of the form $K_{n} \square K_{m}$ where $2 \leq n \leq m$. Thus, the fact that commutativity holds with respect to the Cartesian product guarantees that we have considered all graphs of the form $K_{n} \square K_{m}$ for $n, m \in \mathbb{N}_{\geq 2}$. Finally, the fact that the Cartesian product satisfies $G \square(H \cup K)=(G \square H) \cup(G \square K)$ allows us to consider the Cartesian product of disconnected graphs.

2.2 Direct Product

Given two graphs G and H, the direct product $G \times H$ is the graph whose vertex set is the Cartesian product $V(G) \times V(H)$ and whose edge set is

$$
E(G \times H)=\left\{\left(x_{1}, y_{1}\right)\left(x_{2}, y_{2}\right) \mid x_{1} x_{2} \in E(G) \text { and } y_{1} y_{2} \in E(H)\right\} .
$$

Figure 2.3 depicts the direct product of K_{2} and K_{3}. Other names for the direct product that have appeared in the literature are tensor product, Kronecker product, cardinal product, relational product, cross product, conjunction, weak direct product, Cartesian product, or categorical product.

Figure 2.3: $K_{2} \times K_{3}$

2.2.1 Algebraic Structure

Let Γ_{0} represent the set of all finite graphs, which may or may not be simple. Similar to the Cartesian product, $\left(\Gamma_{0}, \cup\right)$ is clearly a monoid with identity element \mathcal{O}. We now show that $\left(\Gamma_{0}, \times\right)$ is a monoid and $\left(\Gamma_{0}, \cup, \times\right)$ is a semiring. As in Section 2.1.2, the results that follow are stated in [23, pg. $55-56]$, and we provide the details that have been omitted in [23].

Proposition 3. [23] The set of all finite graphs is a monoid under the graph operation direct product.

Proof. Let G, H, and K be graphs in Γ_{0}. Since G and H are finite, $G \times H$ is also finite. Thus, closure is satisfied. We next show that $(G \times H) \times K=G \times(H \times K)$. Define

$$
\begin{aligned}
\phi: V((G \times H) \times K) & \rightarrow V(G \times(H \times K)) \\
\phi(((x, y), z)) & =(x,(y, z))
\end{aligned}
$$

for all $x \in V(G), y \in V(H)$, and $z \in V(K)$. Suppose that $\left(\left(x_{1}, y_{1}\right), z_{1}\right)$ is adjacent to $\left(\left(x_{2}, y_{2}\right), z_{2}\right)$ in $(G \times H) \times K$, where $x_{i} \in V(G), y_{i} \in V(H)$, and $z_{i} \in V(K)$ for $i \in\{1,2\}$. It follows that $\left(x_{1}, y_{1}\right)\left(x_{2}, y_{2}\right) \in E(G \times H)$ and $z_{1} z_{2} \in E(K)$, which implies that $x_{1} x_{2} \in E(G), y_{1} y_{2} \in E(H)$, and $z_{1} z_{2} \in E(K)$. Thus, $\left(y_{1}, z_{1}\right)$ is adjacent to $\left(y_{2}, z_{2}\right)$ in $H \times K$, so that $\left(x_{1},\left(y_{1}, z_{1}\right)\right)\left(x_{2},\left(y_{2}, z_{2}\right)\right) \in$ $E(G \times(H \times K))$. Since the choice of $\left(\left(x_{1}, y_{1}\right), z_{1}\right)$ and $\left(\left(x_{2}, y_{2}\right), z_{2}\right)$ was arbitrary, ϕ is a homomorphism. We next show that ϕ is injective. Suppose that $\phi\left(\left(\left(x_{1}, y_{1}\right), z_{1}\right)\right)=\phi\left(\left(\left(x_{2}, y_{2}\right), z_{2}\right)\right)$ for some $x_{i} \in V(G), y_{i} \in V(H), z_{i} \in V(K), i \in\{1,2\}$. It follows that $\left(x_{1},\left(y_{1}, z_{1}\right)\right)=\left(x_{2},\left(y_{2}, z_{2}\right)\right)$ if and only if $x_{1}=x_{2}, y_{1}=y_{2}$, and $z_{1}=z_{2}$. Thus, $\left(\left(x_{1}, y_{1}\right), z_{1}\right)=\left(\left(x_{2}, y_{2}\right), z_{2}\right)$ and ϕ is a bijection. So ϕ^{-1} exists and the reverse of the argument above shows that ϕ^{-1} is also a homomorphism. It follows that associativity holds for any G, H, and K in Γ_{0} under \times. Finally, notice that K_{1}^{s}, the graph consisting of a single loop, is the identity element for Γ_{0} under \times. Thus, $\left(\Gamma_{0}, \times\right)$ is a monoid.

Proposition 4. [23] The set of all finite graphs forms a semiring under the graph operations disjoint union and direct product.

Proof. We have already seen that $\left(\Gamma_{0}, \cup\right)$ and $\left(\Gamma_{0}, \times\right)$ are monoids. Furthermore, $G \cup H=H \cup G$ implies that $\left(\Gamma_{0}, \cup\right)$ is a commutative monoid. Next, note that for any graph $G \in \Gamma_{0}, V(G \times \mathcal{O})=\emptyset$. Thus, $G \times \mathcal{O}=\mathcal{O}$.

Finally, let G, H, and K be in Γ_{0}. We need to show that $G \times(H \cup K)=(G \times H) \cup(G \times K)$. Define

$$
\begin{aligned}
\phi: V(G \times(H \cup K)) & \rightarrow V((G \times H) \cup(G \times K)) \\
\phi((x, y)) & =(x, y)
\end{aligned}
$$

for all $x \in V(G)$ and $y \in V(H \cup K)$. Suppose $\left(x_{1}, y_{1}\right)\left(x_{2}, y_{2}\right) \in E(G \times(H \cup K))$, where $x_{i} \in$
$V(G)$ and $y_{i} \in V(H \cup K)$ for $i \in\{1,2\}$. By definition of the direct product, $x_{1} x_{2} \in E(G)$ and $y_{1} y_{2} \in E(H \cup K)$. This implies that either $y_{1} y_{2} \in E(H)$ or $y_{1} y_{2} \in E(K)$. If $y_{1} y_{2} \in E(H)$, then $\left(x_{1}, y_{1}\right)\left(x_{2}, y_{2}\right) \in E(G \times H)$. Otherwise, $\left(x_{1}, y_{1}\right)\left(x_{2}, y_{2}\right) \in E(G \times K)$. So ϕ is a homomorphism. Clearly, ϕ is a bijection so ϕ^{-1} exists. The reverse of the above argument shows that ϕ^{-1} is a homomorphism. It follows that $\left(\Gamma_{0}, \cup, \times\right)$ is a semiring.

As in Section 2.1.2, the fact that associativity holds with respect to the direct product allows us to write $G \times H \times K$ to denote $(G \times H) \times K$ and $G \times(H \times K)$ as these two graphs are isomorphic. Moreover, if we define $f: V(G \times H) \rightarrow V(H \times G)$ as $f\left(\left(x_{1}, y_{1}\right)\right)=\left(y_{1}, x_{1}\right)$, then f is an isomorphism. This implies that $\left(\Gamma_{0}, \times\right)$ is a commutative monoid. Thus, when we consider graphs of the form $K_{n} \times K_{m}$ where $3 \leq n \leq m$ in Chapter 3 , commutativity guarantees that we have considered all graphs of the form $K_{n} \times K_{m}$ where $n, m \in \mathbb{N}_{\geq 3}$.

2.3 Generalized Prisms

Given a graph G and any permutation π of $V(G)$, the prism of G with respect to π is the graph πG obtained by taking two disjoint copies of G, denoted G^{1} and G^{2}, and joining every $u \in V\left(G^{1}\right)$ with $\pi(u) \in V\left(G^{2}\right)$. That is, the edges between G^{1} and G^{2} form a perfect matching in πG.

If π is the identity $\mathbf{1}_{G}$, then $\pi G=G \square K_{2}$. The graph $G \square K_{2}$ is often referred to as the prism of G. The study of domination in the prism of a graph was initiated by Hartnell and Rall in [24]. In general, πG is not a graph product and appears to have no algebraic structure. In Chapter 5, we resolve a conjecture regarding this particular type of graph.

2.4 Identifying Codes

Given a graph G and a vertex $v \in V(G)$, we define the ball of radius r centered at v to be $B_{r}(v)=\left\{u \in V(G) \mid d_{G}(u, v) \leq r\right\}$. A set $C \subseteq V(G)$ is an r-identifying code of G if
(i) for every $u \in V(G), B_{r}(u) \cap C \neq \emptyset$, and
(ii) for every pair of distinct vertices u, v in $G, B_{r}(u) \cap C \neq B_{r}(v) \cap C$.

The first to study identifying codes were Karpovsky, Chakrabarty and Levitin [28] who used them to analyze fault-detection problems in multiprocessor systems. For the purpose of this dissertation, we let $r=1$ and refer to a 1-identifying code as simply an identifying code. Thus, condition (i) becomes $N[u] \cap C \neq \emptyset$ and condition (ii) becomes $N[u] \cap C \neq N[v] \cap C$.

Identifying codes can be restated in the context of another familiar graph parameter. Given a graph G, a set of vertices $D \subseteq V(G)$ is a dominating set if $V(G)=N[D]$. That is, D is a dominating set of G if every vertex $v \in V(G)-D$ is adjacent to a vertex $w \in D$. The domination number, denoted $\gamma(G)$, is the minimum cardinality of a dominating set of G. So we can restate the definition of an identifying code as follows: a subset $C \subseteq V(G)$ is an identifying code of G if C is a dominating set and for every pair of distinct vertices u, v in $G, N[u] \cap C \neq N[v] \cap C$.

Given an identifying code, or ID code, C, we call the vertices of C codewords. A pair of vertices $u, v \in V(G)$ are separated by $x \in C$ if x belongs to exactly one of the closed neighborhoods $N[u]$ or $N[v]$. Given a set $C \subseteq V(G)$, we say C separates $V(G)$ if for every pair of vertices $u, v \in V(G)$, there exists a codeword $c \in C$ such that c separates u and v. Therefore, a dominating set C in G is an identifying code if C separates $V(G)$. The black vertices of Figure 2.4 illustrate a minimum identifying code.

Figure 2.4: Example of a minimum identifying code

Although all graphs possess a dominating set, not all graphs possess an identifying code. For example consider the graph K_{3}. For any two distinct vertices $u, v \in V\left(K_{3}\right), N[u]=N[v]$. Therefore, no subset of $V\left(K_{3}\right)$ separates $V\left(K_{3}\right)$. Given a graph G, we refer to two distinct vertices $u, v \in V(G)$ such that $N[u]=N[v]$ as twins, and we say G is twin-free if it contains no such pair. Thus, a graph G admits an identifying code if and only if G is twin-free.

As with dominating sets, we focus on the minimum cardinality of an identifying code, which we denote by $\gamma^{\mathrm{ID}}(G)$. Since any identifying code is also a dominating set, we know $\gamma(G) \leq \gamma^{\mathrm{ID}}(G)$. Notice that constructing an identifying code in G is enough to give an upper bound for $\gamma^{\mathrm{ID}}(G)$. However, establishing a lower bound for $\gamma^{\mathrm{ID}}(G)$ can be significantly harder. That is, proving a dominating set $C \subseteq V(G)$ that separates $V(G)$ is of minimum cardinality can be significantly harder. The majority of Chapters 3 and 4 is dedicated to proving that a proposed upper bound for $\gamma^{\mathrm{ID}}\left(K_{n} \times K_{m}\right)$ or $\gamma^{\mathrm{ID}}\left(K_{n} \square K_{m}\right)$ for any $m, n \in \mathbb{N}$ is also a lower bound, thereby giving an exact value. In the remainder of this section, we survey the literature for known lower bounds for $\gamma^{\text {ID }}(G)$ given any graph G.

2.4.1 Lower Bounds

A general lower bound for the size of an identifying code of a twin-free graph was first given in the original paper by Karpovsky, Chakrabarty and Levitin [28].

Theorem 5. [28, Theorem 1, pg. 599] If G is a twin-free graph on n vertices, then

$$
\gamma^{\mathrm{ID}}(G) \geq\left\lceil\log _{2}(n+1)\right\rceil .
$$

The bound given in Theorem 5 is tight, and all graphs achieving this bound are characterized in [35]. Karpovsky et al. [28] also gave a general lower bound of $\gamma^{\mathrm{ID}}(G)$ based on the maximum degree of G. Foucaud [15] later improved this to the lower bound given below.

Theorem 6. [15, Theorem 2.1, pg. 25] If G is a twin-free, connected graph on n vertices, then

$$
\gamma^{\mathrm{ID}}(G) \geq \frac{2 n}{\Delta(G)+2}
$$

Identifying codes have been studied in certain families of graphs, including trees [3], paths [2, 7, 27], and cycles [2, 19, 40, 7, 27]. An excellent, detailed list of references on identifying codes can be found on Antoine Lobstein's webpage [33]. In terms of graph products, a few of the more recent results have been in the study of hypercubes [4, 25, 26, 29, 34], the Cartesian product of cliques $[18,20]$, and the lexicographic product of two graphs [14]. Additionally, there has been a considerable amount of research on identifying codes in infinite grids. Of the infinite grid graphs that have been studied, the two that bear the closest resemblance to our $K_{n} \times K_{m}$ and $K_{n} \square K_{m}$
for $m, n \in \mathbb{N}$ are the infinite square grid and the infinite king grid defined below where $\mathbb{Z}^{2}=\mathbb{Z} \times \mathbb{Z}$.

1. The infinite square grid G_{s} has $V\left(G_{s}\right)=\mathbb{Z}^{2}$ in which two vertices are adjacent if their Euclidean distance is 1 .
2. The infinite king graph G_{k} has $V\left(G_{k}\right)=\mathbb{Z}^{2}$ in which two vertices are adjacent if their Euclidean distance is 1 or $\sqrt{2}$.

In the context of an infinite graph, bounding the size of an identifying code loses all meaning. If we let $R_{n}=\left\{(x, y) \in \mathbb{Z}^{2}| | x|\leq n,|y| \leq n\}\right.$, then the density of an identifying code C is defined as

$$
D=\lim \sup _{n \rightarrow \infty} \frac{\left|C \cap R_{n}\right|}{\left|R_{n}\right|}
$$

This definition of density is analogous to computing the ratio of code words to the number of vertices in the graph.

Cohen et al. [11] show that the density of any identifying code in the king grid is at least $\frac{2}{9}$. Ben-Haim et al. [1] prove that the minimum density of an identifying code in the square grid is $\frac{7}{20}$. However, the fact that our graphs are neither a king grid graph or a square grid graph, nor are they infinite means much of this work will not be of any use in later chapters.

In 2008, Gravier et al. [20] considered identifying codes in the Cartesian product of two same-sized cliques.

Theorem 7. [20, Theorem 1, pg. 2] If C is a minimum identifying code of $K_{n} \square K_{n}$, then $|C|=$ $\left\lfloor\frac{3 n}{2}\right\rfloor$.

Theorem 7 is the primary motivation behind the work found in Chapters 3 and 4. In Chapter 3, we consider the problem posed by Klavžar at the Bordeaux Workshop on Identifying Codes in 2011 [32] to compute $\gamma^{\text {ID }}\left(K_{n} \times K_{m}\right)$. In Chapter 4, we go back to the original result in [20] and generalize Theorem 7 to include the Cartesian product of two cliques of any size.

Of course, one should also consider the lower bounds for other relevant graph parameters before continuing. El-Zaher and Pareek [12] observed that $\gamma(G \square H)$ is at least the minimum of the orders of G and H. Assuming $n \leq m$, it follows easily that $\gamma\left(K_{n} \square K_{m}\right)=n$. Showing that $\gamma\left(K_{n} \times K_{m}\right)=3$ is also relatively easy. When we apply the lower bound given in Theorem 6 to $K_{n} \times K_{m}$, we get $\gamma^{\mathrm{ID}}\left(K_{n} \times K_{m}\right) \geq \frac{2 m n}{m n-m-n+3}$. Combining the lower bounds for $\gamma^{\text {ID }}\left(K_{n} \times K_{m}\right)$
from Theorem 6 and from $\gamma^{\mathrm{ID}}\left(K_{n} \times K_{m}\right) \geq \gamma\left(K_{n} \times K_{m}\right)$, we get

$$
\gamma^{\mathrm{ID}}\left(K_{n} \times K_{m}\right) \geq \max \left\{\left\lceil\frac{2 m n}{(m-1)(n-1)+2}\right\rceil, 3\right\}=3 \quad \text { for } 3 \leq n \leq m
$$

We show in Chapter 3 that this lower bound is not sharp. In particular, we prove that $\gamma^{\mathrm{ID}}\left(K_{n} \times K_{m}\right)$ is the closest integer to $\frac{2}{3}(m+n)$ for $6 \leq n \leq m$.

On the other hand, when we apply the lower bound of Theorem 6 to $K_{n} \square K_{m}$, we get $\gamma^{\mathrm{ID}}\left(K_{n} \square K_{m}\right) \geq \frac{2 m n}{m+n}$. Since

$$
\frac{2 m n}{m+n} \geq \frac{2 n^{2}}{2 n}=n
$$

and $m \geq n$, the lower bound given in Theorem 6 is equal to $\gamma\left(K_{n} \square K_{m}\right)$ only when $m=n$ and is better when $m>n$. We show in Chapter 4 that

$$
\gamma^{\mathrm{ID}}\left(K_{n} \square K_{m}\right)= \begin{cases}m+\lfloor n / 2\rfloor & \text { if } m \leq 3 n / 2 \\ 2 m-n & \text { if } m \geq 3 n / 2\end{cases}
$$

There is another variation of domination that is closely related to identifying codes. A set $C \subseteq V(G)$ is said to be a locating-dominating set of G if C is a dominating set and C separates every pair of distinct vertices in $V(G)-C$. Figure 2.5 illustrates a locating-dominating set. The size of a minimum locating-dominating set of a graph G is denoted $\gamma_{L}(G)$. Since an identifying code of a graph G is necessarily a locating-dominating set, then we have $\gamma^{\mathrm{ID}}(G) \geq \gamma_{L}(G)$.

(a) locating-dominating set in C_{5}

(b) ID code in C_{5}

Figure 2.5: Examples of locating-dominating sets and ID codes in C_{5}

In [38], Slater proved that for any d-regular graph G on n vertices, $\gamma_{L}(G) \geq \frac{2 n}{d+3}$. This bound is indeed tight, but does not give us any further information about $\gamma^{\mathrm{ID}}\left(K_{n} \times K_{m}\right)$ or $\gamma^{\mathrm{ID}}\left(K_{n} \square K_{m}\right)$.

Chapter 3

Identifying codes of the direct product of two cliques

3.1 Introduction

This chapter is an expanded version of [37], where we focus on the cardinality of a minimum identifying code for the direct product of two nontrivial cliques. As all proofs are provided, we do not give specific references to this paper in this chapter.

For a positive integer n we write $[n]$ to denote the set $\{1,2, \ldots, n\}$, and $[n]$ will be the vertex set of the complete graph K_{n}. In the direct product $K_{n} \times K_{m}$ we refer to a column as the set of all vertices having the same first coordinate. A row is the set of all vertices with the same second coordinate. In particular, for $i \in[n]$, the $i^{\text {th }}$ column is $C_{i}=\{(i, j) \mid j \in[m]\}$. Similarly, for $j \in[m]$ the $j^{\text {th }}$ row is the set $R_{j}=\{(i, j) \mid i \in[n]\}$. Using this terminology we see that two vertices of $K_{n} \times K_{m}$ are adjacent precisely when they belong to different rows and to different columns. In each figure, rows will be horizontal and columns vertical. For ease of reference in this chapter we refer to K_{n} as the first factor of $K_{n} \times K_{m}$ and K_{m} as the second factor. The two product graphs $K_{n} \times K_{m}$ and $K_{m} \times K_{n}$ are clearly isomorphic under a natural map. Throughout the remainder of this work we always have the smaller factor first.

Let $G=K_{n} \times K_{m}$, and suppose that C is a code in G. The column span of C is the set of all columns of G that have a nonempty intersection with C. The number of columns in the column
span of C is denoted by $\operatorname{cs}(C)$. Similarly, the set of all rows of G that contain at least one member of C is the row span of C; its size is denoted $\mathrm{rs}(C)$. For a vertex $v=(i, j)$ of G we say that v is column-isolated in C if $C \cap C_{i}=\{v\}$. Similarly, if $C \cap R_{j}=\{v\}$ then we say that v is row-isolated in C. If v is both column-isolated and row-isolated in C, we simply say v is isolated in C. When there is no chance of confusion and the set C is clear from the context we shorten these to column-isolated, row-isolated and isolated, respectively.

3.2 Main Results

We give statements of the main results here, and the proofs will be given in subsequent subsections.

Note that $K_{2} \times K_{2}$ has vertices with identical closed neighborhoods and so has no ID code.
Theorem 8. For any positive integer $m \geq 5, \gamma^{\mathrm{ID}}\left(K_{2} \times K_{m}\right)=m-1$. In addition, if $3 \leq m \leq 4$, $\gamma^{\mathrm{ID}}\left(K_{2} \times K_{m}\right)=m$.

For $3 \leq n \leq 5$ and $n \leq m \leq 2 n-1$ the values of $\gamma^{\mathrm{ID}}\left(K_{n} \times K_{m}\right)$ were computed by computer program and are given in the following table.

$n \backslash^{m}$	3	4	5	6	7	8	9
3	4	4	5				
4		5	6	7	7		
5			6	7	8	9	9

Table 3.1: $\gamma^{\mathrm{ID}}\left(K_{n} \times K_{m}\right)$ for small n and m

The remaining cases are handled based on the order of the second factor relative to the first factor. Theorem 9 presents this number if both cliques have order at least 3 and one clique is sufficiently large compared to the other; its proof is given in Section 3.4.

Theorem 9. For positive integers n and m where $n \geq 3$ and $m \geq 2 n$,

$$
\gamma^{\mathrm{ID}}\left(K_{n} \times K_{m}\right)=m-1 .
$$

In all other cases (that is, for $6 \leq n \leq m \leq 2 n-1$), the minimum cardinality of an ID code for $K_{n} \times K_{m}$ is one of the values $\lfloor 2(n+m) / 3\rfloor$ or $\lceil 2(n+m) / 3\rceil$. The number $\gamma^{\mathrm{ID}}\left(K_{n} \times K_{m}\right)$
depends on the congruence of $n+m$ modulo 3 . It turns out there are only two general cases instead of three, but one of them has an exception to the easily stated formula. The exact values are given in the following results whose proofs are given in Section 3.4.

Theorem 10. Let n and m be positive integers such that $6 \leq n \leq m \leq 2 n-1$. If $n+m \equiv 0$ $(\bmod 3)$ or $n+m \equiv 2(\bmod 3)$, then

$$
\gamma^{\mathrm{ID}}\left(K_{n} \times K_{m}\right)=\left\lfloor\frac{2 m+2 n}{3}\right\rfloor .
$$

Theorem 11. For a positive integer $n \geq 6$,

$$
\gamma^{\mathrm{ID}}\left(K_{n} \times K_{2 n-5}\right)=2 n-4 .
$$

Theorem 12. Let n and m be positive integers such that $6 \leq n \leq m \leq 2 n-2$ and $m \neq 2 n-5$. If $n+m \equiv 1(\bmod 3)$, then

$$
\gamma^{\mathrm{ID}}\left(K_{n} \times K_{m}\right)=\left\lceil\frac{2 m+2 n}{3}\right\rceil .
$$

3.3 Preliminary Properties

In this section we prove a number of results that will be useful in verifying the minimum size of ID codes in the direct product of two complete graphs. It will be helpful in what follows to remember that a vertex is adjacent to (i, j) in $K_{n} \times K_{m}$ precisely when its first coordinate is different from i and its second coordinate is different from j. Also, recall that we are assuming throughout that $n \leq m$.

Lemma 13. If C is an identifying code of $K_{n} \times K_{m}$, then $\operatorname{cs}(C) \geq n-1$ and $\operatorname{rs}(C) \geq m-1$. In particular, $|C| \geq m-1$.

Proof. Suppose that for some $r \neq s, C \cap R_{r}=\emptyset=C \cap R_{s}$. For any fixed $i \in[n], C \cap N[(i, r)]=$ $C \backslash C_{i}=C \cap N[(i, s)]$. Since this violates C being an ID code, $K_{n} \times K_{m}$ has at most one row disjoint from C. A similar argument shows that $K_{n} \times K_{m}$ has no more than one column disjoint from C. Consequently, $|C| \geq m-1$.

By considering $N[x]$, the following result is obvious but useful. We omit its proof.

Lemma 14. If $C \subseteq V\left(K_{n} \times K_{m}\right)$ and $x=(i, r) \in C$, then C separates x from any $y \in\left(R_{r} \cup C_{i}\right) \backslash\{x\}$.

Lemma 14 addresses separating two vertices that belong to the same row or to the same column. The next result concerns vertices that are not in a common row or common column, that is, two vertices at opposite "corners" of a two-row and two-column configuration in $K_{n} \times K_{m}$.

Lemma 15. (4-Corners Property) Suppose C is a dominating set of $K_{n} \times K_{m}$. For each $(i, r),(j, s) \in$ $K_{n} \times K_{m}$ with $i \neq j, r \neq s, C$ separates (i, r) and (j, s) if and only if

$$
C \cap\left(C_{i} \cup C_{j} \cup R_{r} \cup R_{s}\right) \nsubseteq\{i, j\} \times\{r, s\}
$$

Proof. Suppose that $i \neq j$ and $r \neq s$, and let C_{i}, C_{j} and R_{r}, R_{s} be the corresponding columns and rows of $K_{n} \times K_{m}$. Write $x=(i, r), y=(j, s), w=(i, s)$ and $z=(j, r)$, and define

$$
\begin{aligned}
A & =C \backslash\left(C \cap\left(C_{i} \cup C_{j} \cup R_{r} \cup R_{s}\right)\right) \\
B & =\left[C \cap\left(C_{i} \cup C_{j} \cup R_{r} \cup R_{s}\right)\right] \backslash\{x, y, w, z\}
\end{aligned}
$$

Observe that

$$
\begin{aligned}
C \cap N[x] & =A \cup(C \cap\{x, y\}) \cup\left(C \cap\left(\left(R_{s} \cup C_{j}\right) \backslash\{x, y, w, z\}\right)\right) \\
C \cap N[y] & =A \cup(C \cap\{x, y\}) \cup\left(C \cap\left(\left(R_{r} \cup C_{i}\right) \backslash\{x, y, w, z\}\right)\right)
\end{aligned}
$$

Therefore, C separates x and y if and only if at least one of the two disjoint sets $C \cap\left(\left(R_{s} \cup C_{j}\right) \backslash\right.$ $\{x, y, w, z\})$ or $C \cap\left(\left(R_{r} \cup C_{i}\right) \backslash\{x, y, w, z\}\right)$ is non-empty. Since B is the union of these 2 sets, it follows that C separates x and y if and only if $B \neq \emptyset$, or equivalently if and only if

$$
C \cap\left(C_{i} \cup C_{j} \cup R_{r} \cup R_{s}\right) \nsubseteq\{i, j\} \times\{r, s\}
$$

We will say that a dominating set D of $K_{n} \times K_{m}$ has the 4-corners property with respect to columns C_{i}, C_{j} and rows R_{r}, R_{s} if

$$
D \cap\left(C_{i} \cup C_{j} \cup R_{r} \cup R_{s}\right) \nsubseteq\{i, j\} \times\{r, s\}
$$

Hence, if a dominating set D of $K_{n} \times K_{m}$ is an ID code, then D has the 4-corners property with respect to every pair of columns and every pair of rows. Each of the next three results follows immediately from this fact.

Corollary 16. If C is an identifying code of $K_{n} \times K_{m}$, then C has no more than one isolated codeword.

Corollary 17. Let C be an identifying code of $K_{n} \times K_{m}$. If $\operatorname{cs}(C)=n-1$, then there does not exist a column C_{j} such that $C \cap C_{j}=\{u, v\}$ where both u and v are row-isolated. Similarly, there is no row R_{r} containing exactly two codewords each of which is column-isolated if $\operatorname{rs}(C)=m-1$.

Corollary 18. If C is an identifying code of $K_{n} \times K_{m}$ such that $\operatorname{cs}(C)=n-1$ and $\operatorname{rs}(C)=m-1$, then C has no isolated codeword.

The next two results will be used to construct ID codes, thereby providing an upper bound for $\gamma^{\mathrm{ID}}\left(K_{n} \times K_{m}\right)$. Which one is used will depend on the congruence of $n+m$ modulo 3 .

Proposition 19. If $C \subseteq V\left(K_{n} \times K_{m}\right)$ satisfies the following conditions, then C is an identifying code of $K_{n} \times K_{m}$.
(1) There exist $1 \leq n_{1}<n_{2}<n_{3} \leq n$ and $1 \leq m_{1}<m_{2}<m_{3} \leq m$ such that $\left(n_{1}, m_{1}\right),\left(n_{2}, m_{2}\right),\left(n_{3}, m_{3}\right) \in C ;$
(2) C contains at most one isolated vertex, and every other vertex in C is row-isolated or columnisolated; and
(3) $\operatorname{rs}(C)=m$ and $\operatorname{cs}(C)=n$.

Proof. Assume C is as specified. For ease of reference we denote the graph $K_{n} \times K_{m}$ by G throughout this proof. By the first assumption above it follows immediately that C dominates G since $\left\{\left(n_{1}, m_{1}\right),\left(n_{2}, m_{2}\right),\left(n_{3}, m_{3}\right)\right\}$ does.

We need only to show that C separates every pair x, y of distinct vertices. First assume that x and y are in the same column. If x or y belongs to C, then Lemma 14 shows that C separates them. If neither is in C, then by our assumption that $\operatorname{rs}(C)=m$ and $\operatorname{cs}(C)=n$ we can choose a vertex $z \in C$ from the same row as x. This vertex z separates x and y. Similarly, C separates any two vertices belonging to a common row.

Now, assume $x=(i, r)$ and $y=(j, s)$ where $1 \leq i<j \leq n$ and $1 \leq r<s \leq m$. Any $v=(k, t) \in C$ that is not isolated in C is row-isolated or column-isolated but not both, and it follows that either $\left|C \cap C_{k}\right| \geq 2$ or $\left|C \cap R_{t}\right| \geq 2$.
(a) Suppose $x \in C$ but is not isolated in C. As above, either $\left|C \cap C_{i}\right| \geq 2$ or $\left|C \cap R_{r}\right| \geq 2$. Assume without loss of generality that $\left|C \cap C_{i}\right| \geq 2$. It follows that either $(i, s) \in C$ or there exists $1 \leq t \leq m$ where $t \notin\{r, s\}$ and $(i, t) \in C$. In the first case where we have $(i, s) \in C$, it follows that (i, s) is row-isolated, and thus $y \notin C$. However, each column of G is in the column span of C so there exists $1 \leq p \leq m$ where $p \notin\{r, s\}$ and $(j, p) \in C$ since (i, r) and (i, s) are row-isolated. Thus, $(j, p) \in C \cap N[x]$ but $(j, p) \notin C \cap N[y]$. Hence, C separates x and y. On the other hand, if there exists $1 \leq t \leq m$ where $t \notin\{r, s\}$ and $(i, t) \in C$, then $(i, t) \in C \cap N[y]$ but $(i, t) \notin C \cap N[x]$. Again, this implies that C separates x and y. If we had instead assumed that $\left|C \cap R_{r}\right| \geq 2$, that is we had assumed x is column-isolated and not row-isolated, then a similar argument shows that C separates x and y.
(b) Suppose $x \in C$ and is isolated in C. Since x is both row-isolated and column-isolated, $C=$ $C \cap N[x]$. First assume that $y \notin C$. Since C_{j} is in the column span of C, there exists $1 \leq t \leq m$ with $t \notin\{r, s\}$ such that $(j, t) \in C$, and (j, t) separates x and y. On the other hand, if $y \in C$, then either $\left|C \cap C_{j}\right| \geq 2$ or $\left|C \cap R_{s}\right| \geq 2$ since y is not isolated. In either case, $C \cap N[y] \neq C$, and therefore C separates x and y.
(c) Suppose $x, y \in V(G) \backslash C$. If we assume that C does not separate x and y, then because each row of G is in the row span of C and each column of G is in the column span of C, it follows that

$$
C \cap\left(C_{i} \cup C_{j} \cup R_{r} \cup R_{s}\right)=\{(i, s),(j, r)\}
$$

Thus, by definition, both (i, s) and (j, r) are isolated in C, contradicting the second assumption. Hence, C separates x and y.

Therefore, C separates every pair of distinct vertices, and thus C is an ID code of $K_{n} \times K_{m}$.

Proposition 20. If $C \subseteq V\left(K_{n} \times K_{m}\right)$ satisfies the following conditions, then C is an identifying code of $K_{n} \times K_{m}$.
(1) There exist $1 \leq n_{1}<n_{2}<n_{3} \leq n$ and $1 \leq m_{1}<m_{2}<m_{3} \leq m$ such that $\left(n_{1}, m_{1}\right),\left(n_{2}, m_{2}\right),\left(n_{3}, m_{3}\right) \in C ;$
(2) C contains at most one isolated vertex, and every other vertex in C is row-isolated or columnisolated;
(3) $\operatorname{rs}(C)=m-1$ and $\operatorname{cs}(C)=n$; and
(4) If R_{r} has the property that every $v \in C \cap R_{r}$ is column-isolated but not row-isolated, then $\left|C \cap R_{r}\right| \geq 3$.

Proof. As in the proof of Proposition 19 we see that C dominates $G=K_{n} \times K_{m}$.
We show that C separates every pair x, y of distinct vertices in G. Let R_{r} be the row not in the row span of C. Notice that $G \backslash R_{r} \cong K_{n} \times K_{m-1}$ and that C satisfies the hypotheses of Proposition 19 when considered as a subset of $V(G) \backslash R_{r}$. Thus, C separates x, y if neither is in R_{r}, and so we may assume that $x \in R_{r}$, say $x=(i, r)$.
(a) First assume that $y=(j, r)$ with $i \neq j$. Since $\operatorname{cs}(C)=n$, there exists $1 \leq s \leq m$ such that $r \neq s$ and $(i, s) \in C$. This vertex (i, s) separates x and y. Next, assume that $y=(i, t)$ for some $1 \leq t \leq m$ with $t \neq r$. If $y \in C$, then y separates x and y. However, if $y \notin C$, then since each row of G other than R_{r} is in the row span of C, there exists $1 \leq j \leq n$ with $i \neq j$ such that $(j, t) \in C$. It follows that (j, t) separates x and y.
(b) Next, assume that $y=(j, s)$ where $i \neq j$ and $r \neq s$. If we assume that C does not separate x and y, then C does not satisfy the 4 -Corners Property with respect to columns C_{i}, C_{j} and rows R_{r}, R_{s}. In addition, since R_{r} is not in the row span of C,

$$
C \cap\left(C_{i} \cup C_{j} \cup R_{r} \cup R_{s}\right) \subseteq\{(i, s),(j, s)\}
$$

Since both C_{i} and C_{j} are in the column span of C, it follows that $C \cap\left(C_{i} \cup C_{j} \cup R_{r} \cup R_{s}\right)=$ $\{(i, s),(j, s)\}$. This means that R_{s} contains exactly two members of C and they are both column-isolated, contradicting one of the assumptions. Hence, this case cannot occur either, and it follows that C separates x and y.

Therefore, C is an ID code of $K_{n} \times K_{m}$.

3.4 Proofs of Main Results

In this section we prove all of our main results of this chapter. The general strategy will be to construct an ID code of the claimed optimal size (by employing Propositions 19 and 20) and prove the given direct product has no smaller ID code.

We treat the smallest case first.

Theorem 21. For any positive integer $m \geq 5, \gamma^{\mathrm{ID}}\left(K_{2} \times K_{m}\right)=m-1$. In addition, if $3 \leq m \leq 4$, $\gamma^{\mathrm{ID}}\left(K_{2} \times K_{m}\right)=m$.

Proof. If C is any ID code of $K_{2} \times K_{3}$, then by Lemma 13 it follows that $\mathrm{rs}(C) \geq 2$. No subset of two elements in different rows dominates $K_{2} \times K_{3}$, and so $\gamma^{\mathrm{ID}}\left(K_{2} \times K_{3}\right) \geq 3$. It is easy to check that $\{(1,1),(1,2),(1,3)\}$ is an ID code. A similar argument shows that $\gamma^{\mathrm{ID}}\left(K_{2} \times K_{4}\right)=4$.

If $m \geq 5$, it follows from Lemma 13 that $\gamma^{\mathrm{ID}}\left(K_{2} \times K_{m}\right) \geq m-1$, and it is easily checked that $\{(1,1),(1,2)\} \cup\{(2, r) \mid 3 \leq r \leq m-1\}$ is an ID code.

Now we turn our attention to the case when the first factor has order at least 3 and the second factor is sufficiently larger than the first.

Theorem 22. For positive integers n and m where $n \geq 3$ and $m \geq 2 n$,

$$
\gamma^{\mathrm{ID}}\left(K_{n} \times K_{m}\right)=m-1
$$

Proof. Consider the set

$$
D=\{(i, 2 i-1),(i, 2 i) \mid i \in[n-1]\} \cup\{(n, j) \mid 2 n-1 \leq j \leq m-1\}
$$

Notice that each v in D is row-isolated but not column-isolated, $\operatorname{rs}(D)=m-1$ and $\operatorname{cs}(D)=n$. Furthermore, $(1,1),(2,3)$ and $(3,5)$ are in D. Thus, Proposition 20 guarantees that D is an ID code, and Lemma 13 gives the desired result.

We now focus on direct products of the form $K_{n} \times K_{m}$ where $6 \leq n \leq m \leq 2 n-1$ and prove that in all cases

$$
\begin{equation*}
\left\lfloor\frac{2 m+2 n}{3}\right\rfloor \leq \gamma^{\mathrm{ID}}\left(K_{n} \times K_{m}\right) \leq\left\lceil\frac{2 m+2 n}{3}\right\rceil \tag{3.1}
\end{equation*}
$$

For the remainder of this chapter, when considering any ID code C of $G=K_{n} \times K_{m}$ we define

$$
A_{C}=\{v \in C \mid v \text { is row-isolated in } C\}
$$

and

$$
B_{C}=\{v \in C \mid v \text { is column-isolated in } C\}
$$

Let $\left|A_{C}\right|=x$, and let p denote the number of columns C_{i} of G such that $\left|C \cap C_{i}\right| \geq 2$ and $C \cap C_{i} \subseteq A_{C}$. Similarly, let $\left|B_{C}\right|=y$, and let q represent the number of rows R_{r} of G such that $\left|C \cap R_{r}\right| \geq 2$ and $C \cap R_{r} \subseteq B_{C}$. Notice that C contains at most one isolated codeword, in which case $\left|A_{C} \cap B_{C}\right|=1$. Otherwise, $A_{C} \cap B_{C}=\emptyset$. Moreover, we always have $|C| \geq\left|A_{C} \cup B_{C}\right| \geq x+y-1$.

The approach we take in the proof of Theorem 23, Theorem 24 and Theorem 25 will be to show that any code of cardinality smaller than the claimed value will violate some consequence of the 4 -Corners Property. Which consequence will depend on the particular cardinalities of the row span and column span.

Theorem 23. If n and m are positive integers such that $6 \leq n \leq m \leq 2 n-1$ and $n+m \equiv 0$ $(\bmod 3)$ or $n+m \equiv 2(\bmod 3)$, then

$$
\gamma^{\mathrm{ID}}\left(K_{n} \times K_{m}\right)=\left\lfloor\frac{2 m+2 n}{3}\right\rfloor
$$

Proof. Suppose C is an ID code of $G=K_{n} \times K_{m}$ such that $|C| \leq\left\lfloor\frac{2 n+2 m}{3}\right\rfloor-1$. We consider four cases based on the possible values of $\operatorname{cs}(C)$ and $\operatorname{rs}(C)$.

1. Suppose $\operatorname{cs}(C)=n$ and $\operatorname{rs}(C)=m$.

Since $\operatorname{cs}(C)=n$ and $\left|B_{C}\right|=y$, there are $n-y$ columns that each contain at least two codewords. Thus, $\left|C \backslash B_{C}\right| \geq 2(n-y)$, which implies $\frac{2 m+2 n}{3}-1 \geq|C| \geq 2 n-y$. It follows that $y \geq \frac{4 n-2 m}{3}+1$. Similarly, we get $x \geq \frac{4 m-2 n}{3}+1$. Together these imply that

$$
\frac{2 m+2 n}{3}-1 \geq|C| \geq x+y-1 \geq \frac{2 m+2 n}{3}+1
$$

This is clearly a contradiction, and hence no such C exists with $\operatorname{cs}(C)=n$ and $\operatorname{rs}(C)=m$.
2. Suppose $\operatorname{cs}(C)=n-1$ and $\operatorname{rs}(C)=m$.

Note that since each codeword in B_{C} is column-isolated and $\operatorname{cs}(C)=n-1$, there exist at
least two codewords in each of the remaining $n-1-y$ columns disjoint from the column span of B_{C}. However, Corollary 17 guarantees that $\left|C \cap C_{j}\right| \geq 3$ for any column C_{j} for which $\left|C \cap C_{j}\right| \geq 2$ and $C \cap C_{j} \subseteq A_{C}$. Since p represents the number of such columns, $\left|C \backslash B_{C}\right| \geq 2(n-1-y-p)+3 p=2 n-2-2 y+p$. Consequently, $|C| \geq 2 n-2-y+p$, and it follows that $y \geq \frac{4 n-2 m}{3}-1+p$.

Similarly, since $\left|A_{C}\right|=x$ and $\operatorname{rs}(C)=m,\left|C \backslash A_{C}\right| \geq 2(m-x)$, which implies $|C| \geq 2 m-x$. From Case 1 we see that this gives $x \geq \frac{4 m-2 n}{3}+1$. Moreover, $|C| \geq x+y-1$ so that

$$
\frac{2 m+2 n}{3}-1 \geq|C| \geq x+y-1 \geq \frac{2 m+2 n}{3}+p-1
$$

Hence, $p=0$, and we have equality in the above so that

$$
\left\lfloor\frac{2 m+2 n}{3}\right\rfloor-1=|C|=x+y-1
$$

It follows that $C=A_{C} \cup B_{C}$. If there exists $v \in C \backslash B_{C}$, say $v \in C_{i}$, then C_{i} contains an additional codeword that is also row-isolated. Hence, p is at least 1. However, this contradicts $p=0$ since each codeword is either row-isolated or column-isolated. Consequently, $m=$ $\operatorname{rs}(C) \leq|C|=\left|B_{C}\right| \leq n-1 \leq m-1$. This contradiction shows that this case cannot occur.
3. Suppose $\operatorname{cs}(C)=n$ and $\operatorname{rs}(C)=m-1$.

If we interchange the roles of rows and columns in Case 2, then we are led to $q=0$ and

$$
\left\lfloor\frac{2 m+2 n}{3}\right\rfloor-1=|C|=x+y-1
$$

Thus, $C=A_{C} \cup B_{C}$. On the other hand, since $\operatorname{cs}(C)=n$ it follows as in Case 1 that

$$
y \geq \frac{4 n-2 m}{3}+1 \geq \frac{4 n-2(2 n-1)}{3}+1=\frac{5}{3} .
$$

Since y is an integer, we see that C has at least two column-isolated codewords. One of these, say v, is isolated since $|C|=x+y-1$. Let w be a column-isolated codeword with $w \neq v$, and assume that $w \in R_{j}$. Since w is not isolated but is column-isolated, R_{j} contains
another codeword besides w. All codewords in R_{j} are therefore in B_{C}, and thus $q \geq 1$. This contradiction shows that this case cannot occur.
4. Suppose that $\operatorname{cs}(C)=n-1$ and $\operatorname{rs}(C)=m-1$.

From Case 2 and Case 3, we see that

$$
y \geq \frac{4 n-2 m}{3}-1+p \quad \text { and } \quad x \geq \frac{4 m-2 n}{3}-1+q
$$

Since $\operatorname{cs}(C)=n-1$ and $\operatorname{rs}(C)=m-1$, it follows from Corollary 18 that C does not contain an isolated vertex. It follows that

$$
\frac{2 m+2 n}{3}-1 \geq|C| \geq x+y \geq \frac{2 m+2 n}{3}-2+p+q
$$

Hence, $p+q \leq 1$.
Suppose $p=1$. Consequently, we have equality throughout the above inequality, and thus $C=A_{C} \cup B_{C}$. Suppose there exists $v \in B_{C}$, say $v \in R_{r}$. Since $q=0$ and there are no isolated codewords, it follows that C contains another codeword u in R_{r} that is not column-isolated. But $u \notin A_{C} \cup B_{C}$, which is a contradiction. Therefore, $C=A_{C}$. Since $p=1$ we are led to conclude that $\operatorname{cs}(C)=1$, which is another contradiction.

To show that $q=1$ is not possible we simply interchange the roles of A_{C} and B_{C} in the above. Finally, suppose $p=0=q$. Since $p=0$, any column that contains a row-isolated codeword would also have to contain a codeword that is not row-isolated. Since there can exist at most one of these to guarantee $|C| \leq\left\lfloor\frac{2 m+2 n}{3}\right\rfloor-1$, there is a column C_{i} such that $A_{C} \subseteq C_{i}$, and for some $r,(i, r) \in C \backslash\left(A_{C} \cup B_{C}\right)$. Similarly, since $q=0$, if there exists a row containing a column-isolated codeword, then that row contains a codeword that is not column-isolated. Since $\left|C \backslash\left(A_{C} \cup B_{C}\right)\right| \leq 1$, such a codeword must be (i, r). This implies that $\frac{2 m+2 n}{3}-1 \geq$ $|C| \geq m-1+n-2$, and this implies that $n+m \leq 6$, contradicting our assumption.

Therefore, every ID code of $K_{n} \times K_{m}$ has cardinality at least $\left\lfloor\frac{2 m+2 n}{3}\right\rfloor$.
An application of Proposition 19 shows that the following sets are ID codes of cardinality $\left\lfloor\frac{2 m+2 n}{3}\right\rfloor$ and finishes the proof. See Figure 3.1 for several specific instances of these constructions.

$$
\begin{aligned}
& \text { If } n+m \equiv 0(\bmod 3) \text {, let } \\
& D_{1}=\{(i, 2 i-1),(i, 2 i) \mid 1 \leq i \leq a\} \cup\{(a+2 j-1,2 a+j),(a+2 j, 2 a+j) \mid 1 \leq j \leq b\},
\end{aligned}
$$

where $a=\frac{2 m-n}{3}$ and $b=\frac{2 n-m}{3}$. For $n+m \equiv 2(\bmod 3)$ but $m \neq 2 n-1$, let $a=\frac{2 m-n-1}{3}$, $b=\frac{2 n-m-1}{3}$, and

$$
D_{2}=\{(i, 2 i-1),(i, 2 i) \mid 1 \leq i \leq a\} \cup\{(a+2 j-1,2 a+j),(a+2 j, 2 a+j) \mid 1 \leq j \leq b\} \cup\{(n, m)\}
$$

Finally, if $m=2 n-1$, let

$$
D_{3}=\{(i, 2 i-1),(i, 2 i) \mid i \in[n-1]\} \cup\{(n, 2 n-1)\}
$$

The following figure illustrates ID codes of optimal order for several of the cases of Theorem 23. The vertices of the direct products in the figure are represented, but the edges are omitted for clarity. Recall that columns are vertical and rows are horizontal. Solid vertices indicate the members of an optimal ID code in each case.

(b) $K_{6} \times K_{8}$

Figure 3.1: Examples of ID codes when $n+m \equiv 0,2(\bmod 3)$

For a fixed $n \geq 6$, the lone exception to the formula $\left\lceil\frac{2 m+2 n}{3}\right\rceil$ for $\gamma^{\mathrm{ID}}\left(K_{n} \times K_{m}\right)$ where $n \leq m \leq 2 n-2$ and $n+m$ congruent to 1 modulo 3 is the instance $m=2 n-5$. We now prove Theorem 24, which shows the correct value is $\left\lfloor\frac{2(2 n-5)+2 n}{3}\right\rfloor$. We restate it here for convenience.

Theorem 24. For a positive integer $n \geq 6$,

$$
\gamma^{\mathrm{ID}}\left(K_{n} \times K_{2 n-5}\right)=2 n-4
$$

Proof. Assume there exists an ID code C for $K_{n} \times K_{2 n-5}$ such that $|C| \leq 2 n-5$. Since rs $(C) \geq 2 n-6$, we consider the following two cases.

1. Suppose that $\mathrm{rs}(C)=2 n-6$.

Since each codeword in A_{C} is row-isolated and $\mathrm{rs}(C)=2 n-6$, there exist at least two codewords in each of the remaining $2 n-6-x$ rows disjoint from the row span of A_{C}. However, Corollary 17 guarantees that $\left|C \cap R_{r}\right| \geq 3$ for any row R_{r} where $C \cap R_{r} \subseteq B_{C}$. Since q represents the number of these rows, $\left|C \backslash A_{C}\right| \geq 2(2 n-6-x-q)+3 q$, which implies $|C| \geq 4 n-12-x+q$. Consequently, $2 n-5 \geq 4 n-12-x+q$, which implies $x \geq 2 n-7+q$.

Similarly, since $\operatorname{cs}(C) \geq n-1$ and each codeword in B_{C} is column-isolated, there are at least $n-1-y$ columns disjoint from the column span of B_{C} that each contain at least two codewords. Thus, $\left|C \backslash B_{C}\right| \geq 2(n-1-y)$, which implies that $|C| \geq 2 n-2-y$. Therefore, $y \geq 3$. It follows that

$$
2 n-5 \geq|C| \geq x+y-1 \geq 2 n-5+q
$$

Thus, $q=0$. Moreover, we have equality in the above, and therefore $C=A_{C} \cup B_{C}$. On the other hand, $y \geq 3$ and only one of these column-isolated codewords can be isolated. Consequently, $q \geq 1$ since each codeword of C is either row-isolated or column-isolated, which is a contradiction.
2. Suppose $\operatorname{rs}(C)=2 n-5$.

Using a similar argument as in Case 1 , we have $\left|C \backslash A_{C}\right| \geq 2(2 n-5-x)$, which implies $|C| \geq 4 n-10-x$. This implies $2 n-5 \geq|C| \geq x \geq 2 n-5$. Therefore, it follows that $C=A_{C}$, and thus $\operatorname{cs}(C)=\operatorname{cs}\left(A_{C}\right) \leq \frac{2 n-6}{2}+1=n-2$, contradicting Lemma 13 .

Therefore, no such identifying code C exists with $|C| \leq 2 n-5$. It follows that $\gamma^{\text {ID }}(G) \geq 2 n-4$.
An application of Proposition 20 shows that the set
$D=\{(i, 2 i-1),(i, 2 i) \mid 1 \leq i \leq n-4\} \cup\{(n-3,2 n-7),(n-2,2 n-7),(n-1,2 n-7),(n, 2 n-6)\}$
is an ID code of $K_{n} \times K_{2 n-5}$ of cardinality $2 n-4$.

Theorem 25. Let n and m be positive integers such that $6 \leq n \leq m \leq 2 n-2$ and $m \neq 2 n-5$. If $n+m \equiv 1(\bmod 3)$, then

$$
\gamma^{\mathrm{ID}}\left(K_{n} \times K_{m}\right)=\left\lceil\frac{2 m+2 n}{3}\right\rceil
$$

Proof. Notice that $\left\lceil\frac{2 m+2 n}{3}\right\rceil=\frac{2 m+2 n+1}{3}$. Assume that there exists an ID code C for $K_{n} \times K_{m}$ such that $|C| \leq \frac{2 n+2 m+1}{3}-1$. We again consider four cases based on the possible values of $\operatorname{cs}(C)$ and rs (C).

1. Suppose $\operatorname{cs}(C)=n$ and $\operatorname{rs}(C)=m$.

Using reasoning similar to that in Case 1 of the proof of Theorem 23, we have $\left|C \backslash B_{C}\right| \geq$ $2(n-y)$. This implies that $|C| \geq 2 n-y$, and hence

$$
\frac{2 m+2 n+1}{3}-1 \geq|C| \geq 2 n-y
$$

It follows that $y \geq \frac{4 n-2 m+2}{3}$. Similarly, we have that $x \geq \frac{4 m-2 n+2}{3}$. On the other hand, we know $|C| \geq x+y-1$. Consequently, $\frac{2 m+2 n+1}{3}-1 \geq x+y-1 \geq \frac{2 m+2 n+1}{3}$, which is clearly a contradiction.
2. Suppose $\operatorname{cs}(C)=n-1$ and $\operatorname{rs}(C)=m$.

Since $\left|B_{C}\right|=y$ and $\operatorname{cs}(C)=n-1$, there exist at least two codewords in each of the remaining $n-1-y$ columns that are disjoint from the column span of B_{C}. However, Corollary 17 guarantees $\left|C \cap C_{j}\right| \geq 3$ for any such column C_{j} where $C \cap C_{j} \subseteq A_{C}$. Since p represents the number of these columns, $\left|C \backslash B_{C}\right| \geq 2(n-1-y-p)+3 p=2 n-2-2 y+p$. As a result it follows that $y \geq \frac{4 n-2 m-4}{3}+p$.

Similarly, since $\operatorname{rs}(C)=m$ and $x=\left|A_{C}\right|$ we get $\left|C \backslash A_{C}\right| \geq 2(m-x)$, which implies $|C| \geq 2 m-x$. As in Case 1 it follows that $x \geq \frac{4 m-2 n+2}{3}$. This yields

$$
\frac{2 m+2 n+1}{3}-1 \geq|C| \geq x+y-1 \geq \frac{2 m+2 n+1}{3}+p-2 .
$$

Thus, $p \leq 1$. Assume first that $p=1$. This yields equality in the above, and thus $C=A_{C} \cup B_{C}$, $y=\frac{4 n-2 m-1}{3}$ and $x=\frac{4 m-2 n+2}{3}$. Furthermore, C contains an isolated codeword, call it v. Since $p=1$, there exists a column C_{i} such that $A_{C} \backslash\{v\}=C \cap C_{i}$. It follows that $\operatorname{cs}\left(A_{C}\right)=2$. On
the other hand, $\operatorname{cs}(C)=n-1$ so $B_{C} \backslash\{v\}$ spans the remaining $n-3$ columns. Therefore, $n-3=\frac{4 n-2 m-1}{3}-1$, which contradicts the assumption that $n \leq m$.

Therefore, we conclude that $p=0$. First assume that C contains no isolated codeword. This implies

$$
\frac{2 m+2 n+1}{3}-1 \geq|C| \geq x+y \geq \frac{2 m+2 n+1}{3}+p-1
$$

Since $p=0$ we get equality throughout the above, and hence $C=A_{C} \cup B_{C}$. As in the proof of Case 2 of Theorem 23 we arrive at a contradiction. Therefore, C contains an isolated codeword, say v. Because $p=0$, any column that contains a row-isolated codeword other than v would also have to contain a codeword that is not row-isolated. Furthermore, the fact that $p=0$, together with

$$
\frac{2 m+2 n+1}{3}-1 \geq|C| \geq x+y-1 \geq \frac{2 m+2 n+1}{3}+p-2
$$

implies that there exists at most one such codeword that is neither row-isolated nor columnisolated. Note that $x \geq \frac{4 m-2 n+2}{3} \geq 5$. Therefore, the row-isolated vertices other than v are contained in precisely one column, say C_{i}. Hence, $A_{C} \backslash\{v\} \subseteq C \cap C_{i}$. We let (i, r) denote the codeword that is neither row-isolated nor column-isolated. This means $C=A_{C} \cup B_{C} \cup\{(i, r)\}$ and so $y=\frac{4 n-2 m-4}{3}$. It follows that $\operatorname{cs}\left(A_{C}\right)=2$. On the other hand, $\operatorname{cs}(C)=n-1$ so $B_{C} \backslash\{v\}$ spans the remaining $n-3$ columns. Therefore, $n-3=\frac{4 n-2 m-4}{3}-1$, which implies $2 m=n+2$, again contradicting the assumption that $n \leq m$.
3. Suppose $\operatorname{cs}(C)=n$ and $\operatorname{rs}(C)=m-1$.

Since $\left|A_{C}\right|=x$ and $\operatorname{rs}(C)=m-1$, there exist at least 2 codewords in each of the remaining $m-1-x$ rows disjoint from the row span of A_{C}. However, Corollary 17 guarantees $\left|C \cap R_{r}\right| \geq 3$ for any such row R_{r} where $C \cap R_{r} \subseteq B_{C}$. Since q represents the number of these rows, $\left|C \backslash A_{C}\right| \geq 2(m-1-x-q)+3 q=2 m-2-2 x+q$. This implies that $x \geq \frac{4 m-2 n-4}{3}+q$. Similarly, since $\operatorname{cs}(C)=n$ and $\left|B_{C}\right|=y$ we get $\left|C \backslash B_{C}\right| \geq 2(n-y)$, which implies $|C| \geq 2 n-y$. As in Case 1 it follows that $y \geq \frac{4 n-2 m+2}{3}$. Consequently,

$$
\frac{2 m+2 n+1}{3}-1 \geq|C| \geq x+y-1 \geq \frac{2 m+2 n+1}{3}+q-2
$$

Thus, $q \leq 1$. Assume first that $q=1$. This gives equality in the above, and thus $C=A_{C} \cup B_{C}$, $y=\frac{4 n-2 m+2}{3}$ and $x=\frac{4 m-2 n-1}{3}$. Furthermore, C contains an isolated codeword, call it v. Since $q=1$, there exists a row R_{r} such that $B_{C} \backslash\{v\}=C \cap R_{r}$. Thus, $\operatorname{rs}\left(B_{C}\right)=2$. On the other hand, $\mathrm{rs}(C)=m-1$ so $A_{C} \backslash\{v\}$ spans the remaining $m-3$ rows. Therefore, $m-3=\frac{4 m-2 n-1}{3}-1$, which contradicts the assumption that $m \neq 2 n-5$.

Therefore, $q=0$. First assume C contains no isolated codeword. Consequently, $C=A_{C} \cup B_{C}$ and since $q=0$, it follows that $C=A_{C}$. Since $\operatorname{cs}(C)=n$ and no isolated codeword exists, it follows that $|C| \geq 2 n$. Therefore, $\frac{2 m+2 n+1}{3}-1 \geq 2 n$, which implies $m \geq 2 n+1$. Because of this contradiction we conclude that C contains an isolated codeword, say v.

Because $q=0$, any row that contains a column-isolated codeword other than v would also have to contain a codeword that is not column-isolated.

Furthermore, the fact that $q=0$, together with

$$
\frac{2 m+2 n+1}{3}-1 \geq|C| \geq x+y-1 \geq \frac{2 m+2 n+1}{3}+q-2
$$

implies that there exists at most one such codeword that is neither row-isolated nor columnisolated. Note that $y \geq \frac{4 n-2 m+2}{3} \geq 2$. Therefore, the column-isolated vertices other than v are contained in precisely one row, say R_{r}, and hence $B_{C} \backslash\{v\} \subseteq C \cap R_{r}$. We let (i, r) denote the codeword that is neither row-isolated nor column-isolated. This means $C=A_{C} \cup B_{C} \cup\{(i, r)\}$ and so $x=\frac{4 m-2 n-4}{3}$. It follows that $\operatorname{rs}\left(B_{C}\right)=2$. On the other hand, $\operatorname{rs}(C)=m-1$ so $A_{C} \backslash\{v\}$ spans the remaining $m-3$ rows. Therefore, $m-3=\frac{4 m-2 n-4}{3}-1$, which implies $m=2 n-2$. However, in this specific case $x=2 n-4$ and $y=2$. Since $A_{C} \cap B_{C}=\{v\}$, it follows that

$$
n=\operatorname{cs}(C) \leq \frac{\left|A_{C} \backslash\{v\}\right|}{2}+\left|B_{C}\right|=\frac{2 n-4-1}{2}+2=n-\frac{1}{2}
$$

which is a contradiction.
4. Suppose that $\operatorname{cs}(C)=n-1$ and $\operatorname{rs}(C)=m-1$.

From Case 2 and Case 3, we see that

$$
y \geq \frac{4 n-2 m-4}{3}+p \quad \text { and } \quad x \geq \frac{4 m-2 n-4}{3}+q
$$

Since $\operatorname{cs}(C)=n-1$ and $\operatorname{rs}(C)=m-1$, it follows from Corollary 18 that C does not contain an isolated codeword. Thus,

$$
\frac{2 m+2 n+1}{3}-1 \geq|C| \geq x+y \geq \frac{2 m+2 n+1}{3}-3+p+q .
$$

Hence, $p+q \leq 2$.
(i) Suppose that $p=0$. For each column C_{i} where $A_{C} \cap C_{i} \neq \emptyset$, there will exist another codeword in C_{i} that is not row-isolated. To guarantee that $\frac{2 m+2 n+1}{3}-1 \geq|C|, C$ contains at most two such codewords. Therefore, $\operatorname{cs}\left(A_{C}\right) \leq 2$. If $\operatorname{cs}\left(A_{C}\right)=2$, then $y=\frac{4 n-2 m-4}{3}$, and it follows that

$$
n-1=\operatorname{cs}(C)=\operatorname{cs}\left(A_{C}\right)+\operatorname{cs}\left(B_{C}\right)=2+\frac{4 n-2 m-4}{3}
$$

This contradicts the assumption that $m \geq n$, and thus $\operatorname{cs}\left(A_{C}\right)<2$. On the other hand, $x \geq \frac{4 m-2 n-4}{3}+q \geq \frac{8}{3}$. Hence, C contains precisely one codeword, say v, that is neither row-isolated nor column-isolated. This implies that $\operatorname{cs}\left(A_{C}\right)=1$, and if we let C_{i} represent the column containing these row-isolated vertices, then $v \in C_{i}$ and $\operatorname{cs}\left(A_{C} \cup\{v\}\right)=1$. Since

$$
n-1=\operatorname{cs}(C)=\operatorname{cs}\left(A_{C} \cup\{v\}\right)+\operatorname{cs}\left(B_{C}\right)=1+\operatorname{cs}\left(B_{C}\right),
$$

we know $\operatorname{cs}\left(B_{C}\right)=n-2$. Therefore, $y=n-2$ since each vertex of B_{C} is column-isolated. On the other hand, to guarantee $\frac{2 m+2 n+1}{3}-1 \geq|C|$, it is the case that $y \leq \frac{4 n-2 m-4}{3}+1$. Consequently, $n-2 \leq \frac{4 n-2 m-4}{3}+1$, which again implies that $m<n$. This contradiction shows that $p \neq 0$.
(ii) Suppose that $q=0$. For each row R_{r} where $B_{C} \cap R_{r} \neq \emptyset$, there will exist another codeword in R_{r} that is not column-isolated. Since $p \neq 0, C$ contains at most one such codeword and it follows that $\operatorname{rs}\left(B_{C}\right) \leq 1$. On the other hand, $y \geq \frac{4 n-2 m-4}{3}+p \geq p \geq 1$. This implies $\operatorname{rs}\left(B_{C}\right)=1$, and C contains precisely one codeword, say v, that is neither row-isolated nor column-isolated. Since v is in the same row as the vertices of $B_{C}, \operatorname{rs}\left(B_{C} \cup\{v\}\right)=1$. This implies

$$
m-1=\operatorname{rs}(C)=\operatorname{rs}\left(A_{C}\right)+\operatorname{rs}\left(B_{C} \cup\{v\}\right)=\operatorname{rs}\left(A_{C}\right)+1
$$

and consequently $m-2=\operatorname{rs}\left(A_{C}\right)$. Therefore, $x=m-2$ since each vertex of A_{C} is row-isolated. On the other hand, since v is not column-isolated and $p=1$, it follows that $\operatorname{cs}\left(A_{C} \cup\{v\}\right)=2$. Therefore,

$$
n-1=\operatorname{cs}(C)=\operatorname{cs}\left(A_{C} \cup\{v\}\right)+\operatorname{cs}\left(B_{C}\right)=2+\operatorname{cs}\left(B_{C}\right)
$$

which implies $y=\operatorname{cs}\left(B_{C}\right)=n-3$. Combining these facts we get

$$
|C|=\left|A_{C} \cup B_{C} \cup\{v\}\right|=x+y+1=m+n-4
$$

However, $\frac{2 m+2 n+1}{3}-1 \geq|C|=m+n-4$, which implies $m+n \leq 10$. This contradicts our assumption that $n \geq 6$.
(iii) Since $p=1$ and $q=1$, then $x \geq \frac{4 m-2 n-4}{3}+1$ and $y \geq \frac{4 n-2 m-4}{3}+1$. It follows that

$$
\frac{2 m+2 n+1}{3}-1 \geq|C| \geq x+y \geq \frac{2 m+2 n+1}{3}-1
$$

Thus, $C=A_{C} \cup B_{C}$. On the other hand, $\operatorname{cs}\left(A_{C}\right)=1$ since $p=1$. Therefore, B_{C} spans the remaining $n-2$ columns since $\operatorname{cs}(C)=n-1$. Hence, $n-2=\frac{4 n-2 m-4}{3}+1$, which contradicts $m \geq n$.

Therefore, every ID code of $K_{n} \times K_{m}$ has cardinality at least $\left\lceil\frac{2 m+2 n}{3}\right\rceil$.

We now present ID codes to show that this lower bound is realized. Figure 3.2 contains examples of minimum cardinality ID codes for some cases covered in Theorem 25. As in Figure 3.1 the code consists of the solid vertices.

If $m \neq 2 n-2$, let
$D_{1}=\{(1,1)\} \cup\{(i, 2 i),(i, 2 i+1) \mid 1 \leq i \leq a\} \cup\{(a+2 j-1,2 a+j+1),(a+2 j, 2 a+j+1) \mid 1 \leq j \leq b\}$,
where $a=\frac{2 m-n-2}{3}$ and $b=\frac{2 n-m+1}{3}$. It is straightforward to check that D_{1} satisfies the properties of Proposition 19 and is therefore an ID code of $K_{n} \times K_{m}$.

Figure 3.2: Several ID codes when $n+m \equiv 1(\bmod 3), m \neq 2 n-5$

If $m=2 n-2$, let

$$
D_{2}=\{(1,1)\} \cup\{(i, 2 i),(i, 2 i+1) \mid 1 \leq i \leq n-2\} \cup\{(n-1,2 n-2),(n, 2 n-2)\}
$$

Again, one can verify that D_{2} satisfies all properties of Proposition 19 and is therefore an ID code of $K_{n} \times K_{2 n-2}$.

Therefore, if $m \neq 2 n-5$ but $n+m \equiv 1(\bmod 3)$ and $6 \leq n \leq m \leq 2 n-2$, then

$$
\gamma^{\mathrm{ID}}\left(K_{n} \times K_{m}\right)=\left\lceil\frac{2 m+2 n}{3}\right\rceil .
$$

Chapter 4

ID Codes in Cartesian Products of

Cliques

4.1 Introduction

In this chapter, we determine the minimum size of an identifying code in the Cartesian product of two general cliques. We then provide upper and lower bounds in regards to the Cartesian product of three or more cliques. For example, we show that the minimum size of an identifying code of the product of three cliques of size m is approximately m^{2}, and that the minimum size of an identifying code when one clique is much larger than the others is related to the total domination number of the product of the smaller cliques. This chapter is an expanded version of [18]. As all proofs are provided, we do not give specific references to this paper in this chapter.

4.2 Two Cliques

The result for equal cliques was proved by Gravier et al.:
Theorem 26. [20, Theorem 1, pg. 2] For $m \geq 1$, $\gamma^{\mathrm{ID}}\left(K_{m} \square K_{m}\right)=\lfloor 3 m / 2\rfloor$.

This result was also reproved in Foucaud et al. [16, Proposition 10], since as we will exploit, the graph $K_{m} \square K_{m}$ is the line graph of $K_{m, m}$. We present here the exact result for the Cartesian product of two general cliques.

Theorem 27. For $2 \leq n \leq m$, we have

$$
\gamma^{\mathrm{ID}}\left(K_{n} \square K_{m}\right)= \begin{cases}m+\lfloor n / 2\rfloor & \text { if } m \leq 3 n / 2 \\ 2 m-n & \text { if } m \geq 3 n / 2\end{cases}
$$

We prove this theorem in the next two subsections. We will use $\{1, \ldots, m\}$ for the vertex set of the clique/complete graph K_{m}.

4.2.1 Lower bound

We will need the edge analogue of ID codes. An edge-ID code of G is a set D of edges such that for each edge $e \in E(G)$, the subset of edges of D incident with e is nonempty and distinct. A set of edges D is edge-dominating if every edge in G is either in D or incident with an element in D.

We will use the fact that $K_{n} \square K_{m}$ is the line graph of $K_{n, m}$ by considering edge-ID codes for $K_{n, m}$. Let the partite sets of $K_{n, m}$ be $X=\left\{x_{1}, \ldots, x_{m}\right\}$ and $Y=\left\{y_{1}, \ldots, y_{n}\right\}$.

Lemma 28. If an edge-dominating set D of $K_{n, m}$ is an edge-ID code, then
(1) in the spanning subgraph H with edge-set $D,\left|N_{H}(S)\right| \geq 2$ for any set S of two vertices in the same partite set;
(2) any set T of two vertices of each partite set is incident with at least three edges of D.

Proof. (1) Suppose $S=\left\{x_{1}, x_{2}\right\}$ has $\left|N_{H}(S)\right| \leq 1$. Say $N_{H}(S) \subseteq\left\{y_{1}\right\}$. Then D does not separate edges $x_{1} y_{1}$ and $x_{2} y_{1}$, a contradiction.
(2) Suppose $T=\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}$ is incident with only two edges of D. Then by property (1), these two edges form a matching in T. However, then the two edges of T not in D are not separated.

Lemma 29. For integers $2 \leq n \leq m$, an edge-ID code D of $K_{n, m}$ satisfies

$$
|D| \geq \max \left\{2 m-n, m+\left\lfloor\frac{n}{2}\right\rfloor\right\}
$$

Proof. The result is trivial if $m=2$; so assume $m>2$. Let D be a minimum edge-ID code of $K_{n, m}$. Suppose some vertex of X is disjoint from D, say x_{1}. By property (1), each x_{j} for $2 \leq j \leq m$ is incident to at least two edges in D. It follows that $|D| \geq 2 m-2 \geq \max \{2 m-n, m+\lfloor n / 2\rfloor\}$, as
required. So we may assume every vertex of X is incident with an edge of D. For each $i \in\{1, \ldots, m\}$, choose an edge $e_{i} \in D$ incident to $x_{i} \in X$, and let $T=\left\{e_{1}, \ldots, e_{m}\right\}$.

Consider any $y_{i} \in Y$. By property (1) applied to each pair of vertices in $N_{T}\left(y_{i}\right)$, it follows that at most one vertex in $N_{T}\left(y_{i}\right)$ is not incident with an edge of $D-T$. Thus $|D-T| \geq$ $\sum_{i=1}^{n}\left(d_{T}\left(y_{i}\right)-1\right)=m-n$, and so $|D| \geq 2 m-n$.

It remains to show that $|D| \geq m+\lfloor n / 2\rfloor$. Define

$$
\begin{aligned}
& Y_{1}=\{y \in Y \mid y \text { is incident to exactly } 1 \text { edge in } T\}, \quad \text { and } \\
& Y_{2}=\{y \in Y \mid y \text { is incident to at least } 2 \text { edges in } T\} .
\end{aligned}
$$

Let $\left|Y_{1}\right|=n_{1}$ and $\left|Y_{2}\right|=n_{2}$. There are two cases:

- Suppose some vertex of Y is disjoint from D, say y_{1}. By property (1) applied to the set $\left\{y_{i}, y_{1}\right\}$ for each $y_{i} \in Y-Y_{2}-y_{1}$, we can conclude D contains at least $2\left(n-n_{1}-n_{2}-1\right)+n_{1}=$ $2 n-n_{1}-2 n_{2}-2$ edges disjoint from T. By property (1) applied to one pair of vertices in $N_{T}\left(y_{i}\right)$ for each $y_{i} \in Y_{2}$, it is also true that D contains at least n_{2} edges disjoint from T. It follows that:

$$
|D| \geq|T|+\left\lceil\frac{\left(2 n-n_{1}-2 n_{2}-2\right)+n_{2}}{2}\right\rceil=m+\left\lceil\frac{2 n-n_{1}-n_{2}-2}{2}\right\rceil \geq m+\left\lfloor\frac{n}{2}\right\rfloor .
$$

- Suppose every vertex of Y is incident with D. By property (2) applied to $\left\{y_{i}, y_{j}\right\} \cup N_{T}\left(\left\{y_{i}, y_{j}\right\}\right)$ for each $y_{i}, y_{j} \in Y_{1}$, it follows that at most one vertex of Y_{1} is not incident with an edge in $D-T$. At the same time, every vertex in $Y-Y_{1}-Y_{2}$ is incident with an edge of $D-T$. Therefore, D contains at least $\left(n_{1}-1\right)+\left(n-n_{1}-n_{2}\right)=n-n_{2}-1$ edges disjoint from T. As above, D contains at least n_{2} edges disjoint from T. It follows that

$$
|D| \geq|T|+\left\lceil\frac{\left(n-n_{2}-1\right)+n_{2}}{2}\right\rceil=m+\left\lfloor\frac{n}{2}\right\rfloor .
$$

In any case, an edge-ID code D of $K_{n, m}$ satisfies $|D| \geq \max \{2 m-n, m+\lfloor n / 2\rfloor\}$.

4.2.2 Construction

We now construct ID codes to show the lower bound is also the upper bound. Let $G=$ $K_{n} \square K_{m}$ with $m \geq n$. Gravier et al. [20] constructed ID codes for the case $n=m$. Based on their construction, we define the following sets

$$
\begin{aligned}
& A=\{(i, i) \mid 1 \leq i \leq n\} \\
& B=\{(i, n+i) \mid 1 \leq i \leq m-n\} \\
& C=\{(n-i+1, i) \mid 1 \leq i \leq\lfloor n / 2\rfloor\}, \text { and } \\
& X=\{(1, i),(2, i) \mid\lceil(3 n+1) / 2\rceil \leq i \leq m\} .
\end{aligned}
$$

(Note that $X=\emptyset$ if $m \leq 3 n / 2$.) Further, define $D=A \cup B \cup C \cup X$. Note that $|D|=n+m-n+$ $\lfloor n / 2\rfloor+m-\lceil(3 n+1) / 2\rceil+1=2 m-n$ if $m>3 n / 2$, and that $|D|=m+\lfloor n / 2\rfloor$ otherwise.

For example, here is the picture for $n=9$ and $m=12$.

Notice that each column and each row of G intersects D, and therefore D dominates G. So let $u=(i, j)$ and $v=(x, y)$ be distinct vertices of G. We need to show that D separates these two vertices.

Start by considering the set A and assume that A does not separate u and v (that is, $N[u] \cap A=N[v] \cap A)$, since otherwise we are done. There are two cases.

If $N[u]$ and $N[v]$ contain two vertices of A, then it must be that $i=y$ and $x=j$. But then it is easily seen that u and v are separated by C.

So assume $N[u]$ and $N[v]$ contain exactly one vertex of A. Then it must be that $i=x$, and that $j, y \in\{i\} \cup\{n+1, \ldots, m\}$. If $j=i$, then C separates u and v; so we may assume $y, j>n$.

If $j, y \leq 3 n / 2$, then u and v are separated by B. On the other hand, if one or both j, y is greater than $3 n / 2$, then the two vertices are separated by X. Thus D is an ID code, as required.

This concludes the proof of Theorem 27.

4.3 Equal Cliques

We now consider ID codes for the product of multiple copies of equal-sized cliques.
The hypercube is the Cartesian product of K_{2} 's and there has been considerable research on ID codes in hypercubes. Between the original paper by Karpovsky et al. [28], Exoo et al. [13] and Blass et al. [5], the minimum size of an ID code for the d-dimensional hypercube Q_{d} is now known for small value of d. These values are given in the table below:

d	3	4	5	6	7
$\gamma^{\mathrm{ID}}\left(Q_{d}\right)$	4	7	10	19	32

Between them, it is also shown that $\gamma^{\text {ID }}$ of the d-dimensional hypercube is asymptotically $(2+o(1)) \times$ $2^{d} /(d+2)$. (Note that Kim and Kim [31] consider what graph theory calls the Cartesian product of cycles, not hypercubes.)

We start with a simple construction.

Theorem 30. Let $d \geq 3$ and let G be the Cartesian product of d copies of K_{m}. Then

$$
\gamma^{\mathrm{ID}}(G) \leq m^{d-1}
$$

Proof. Define D as the set of vertices in G whose coordinates sum to 0 modulo m. That is, D is the set of all $\left(x_{1}, x_{2}, \ldots, x_{d}\right)$ with $1 \leq x_{i} \leq m$ for each $i \in\{1, \ldots, m\}$ and $\sum_{i=1}^{m} x_{i}$ is a multiple of m. Note that $|D|=m^{d-1}$, since we can freely specify the first $d-1$ coordinates. (In coding theory D is called a parity code.)

We claim that D is an independent set. Consider any two vertices v_{1} and v_{2} in D. If they were adjacent, then v_{1} and v_{2} would have $d-1$ coordinates in common. However, any $d-1$ coordinates determine the last one. Therefore, D is an independent set.

We claim that D is an ID code. If vertex v is in D, then $N[v] \cap D=\{v\}$. On the other hand, if $u \in V(G)-D$, then u is adjacent to exactly d vertices in D, each of which agrees with u in exactly $d-1$ coordinates. It follows that D certainly separates any two vertices in D, as well as any pair of vertices $u \in V(G)-D$ and $v \in D$.

Thus, we need only to consider pairs of vertices in $V(G)-D$. We claim that $N[u] \cap D$ uniquely determines u for $u \in V(G)-D$. Indeed, we can determine u by simply taking the majority vote in each coordinate.

In general, the best lower bound we know is the bound from the original paper by Karpovsky et al. [28]. Namely, they showed that $\gamma^{\mathrm{ID}}(G) \geq 2 n /(r+2)$ for an r-regular graph G of order n.

Theorem 31. [28, Theorem 1, pg. 599] Let G be the Cartesian product of d copies of K_{m}. Then

$$
\gamma^{\mathrm{ID}}(G) \geq \frac{2 m^{d}}{d m-d+2}
$$

Together with Theorem 30, this shows that for the Cartesian product of d copies of K_{m}, $\gamma^{\text {ID }}$ is $\Theta\left(m^{d-1}\right)$. We know almost nothing about the actual values. We can, however, improve the lower bound for three cliques, which we consider next.

4.4 Lower Bound For Three Equal Cliques

We will need some concepts from domination. We say that a set D open-dominates vertex x if $N(x) \cap D \neq \emptyset$. We say that set D is a total dominating set if it open-dominates every vertex of G. The minimum cardinality of a total dominating set is denoted $\gamma_{t}(G)$.

Consider the graph $G \square K_{m}$ and let D be a subset of the vertices. We will use the notation G_{i} to denote the i th copy of G (that is, all vertices of the form $(?, i)$), and D_{i} to be the subset of D in G_{i}. We let X_{i} denote all vertices in G_{i} that do not have a neighbor in D_{i}. (That is, X_{i} is the vertices of G_{i} that are not open-dominated by D_{i}.) Finally, let \hat{X}_{i} be the subset of $V(G)$ corresponding to X_{i} (i.e., the projection of X_{i} onto G).

Lemma 32. Let D be an $I D$ code of $G \square K_{m}$ and let X_{i} be defined as above. Then the \hat{X}_{i} are disjoint.

Proof. Suppose that the \hat{X}_{i} are not disjoint. Say $v \in \hat{X}_{i} \cap \hat{X}_{j}$. That is, $(v, i) \in X_{i}$ and $(v, j) \in$ X_{j}. Then these two vertices are not separated by D, since the intersection of each of their closed neighborhoods with D is precisely the set of vertices of D in the $v^{\text {th }}$ copy of K_{m}. The result follows.

From this lemma we obtain a lower bound for the product of three cliques:

Theorem 33. $\gamma^{\mathrm{ID}}\left(K_{m} \square K_{m} \square K_{m}\right) \geq m^{2}-o\left(m^{2}\right)$.

Proof. Let $G=K_{m} \square K_{m}$ and let D be an ID code of $G \square K_{m}$. Define D_{i} and X_{i} as in Lemma 32 . From that lemma we have that $\sum_{i=1}^{m}\left|X_{i}\right| \leq m^{2}$.

On the other hand, if $\left|D_{i}\right|<m$ then there are at least $m-\left|D_{i}\right|$ rows and columns in G_{i} not containing a vertex of D_{i}, and so $\left|X_{i}\right| \geq\left(m-\left|D_{i}\right|\right)^{2}$. It follows that $\left|D_{i}\right| \geq m-\sqrt{\left|X_{i}\right|}$. Hence

$$
|D|=\sum_{i=1}^{m}\left|D_{i}\right| \geq m^{2}-\sum_{i=1}^{m} \sqrt{\left|X_{i}\right|}
$$

To bound $|D|$ from below, we need to maximize $z=\sum_{i=1}^{m} \sqrt{\left|X_{i}\right|}$, subject to the constraint $\sum_{i=1}^{m}\left|X_{i}\right| \leq m^{2}$. Using the fact that $\sum_{i=1}^{m} \sqrt{\left|X_{i}\right|}$ is concave, the method of Lagrange for nonlinear programs shows that the optimal value is $z^{*}=m \sqrt{m}$. Thus, $|D| \geq m^{2}-m \sqrt{m}$.

For $m=2$ we know from [28] that $\gamma^{\mathrm{ID}}\left(K_{2} \square K_{2} \square K_{2}\right)=\gamma^{\mathrm{ID}}\left(Q_{3}\right)=4$. When $m=3$, an exhaustive search by computer shows that $\gamma^{\mathrm{ID}}\left(K_{3} \square K_{3} \square K_{3}\right)=9$. We conjecture that this pattern continues.

Conjecture 34. For all $m \geq 1$, $\gamma^{\mathrm{ID}}\left(K_{m} \square K_{m} \square K_{m}\right)=m^{2}$.

4.5 Unequal Cliques

We will need another concept from domination. A set D doubly dominates vertex x if $|N[x] \cap D| \geq 2$. We start with a partial converse to Lemma 32.

Lemma 35. Let D be a subset of the vertices of $G \square K_{m}$, and X_{i} defined as in Lemma 32. If every vertex is doubly dominated from within its copy of K_{m}, and the projections \hat{X}_{i} are disjoint, then D is an ID code.

Proof. The idea is that its neighbors in the copy of K_{m} determine which copy of K_{m} a vertex is in, and its neighbors (or lack thereof) in G_{i} determine which G_{i} it is in.

To be precise, let (u, i) and (v, j) be two vertices in $G \square K_{m}$. If $u \neq v$, then by the hypothesis (u, i) is dominated by at least two vertices of D within its copy of K_{m}, say (u, k) and (u, ℓ) (where possibly $k, \ell \in\{i, j\})$. Since (v, j) is adjacent to at most one of these vertices, D separates (u, i) and (v, j).

So assume that $u=v$. By the hypothesis, it cannot be that both $(u, i) \in X_{i}$ and $(u, j) \in X_{j}$. So say $(u, i) \notin X_{i}$; that is, (u, i) is dominated by some (w, i) in D ; this vertex separates (u, i) from (u, j). Thus D is an ID code.

We can use Lemmas 32 and 35 to give approximate results for the minimum size of an ID code for the product of cliques where one clique is very large.

Theorem 36. For any isolate-free graph G of order n, and integer $m \geq 3$,

$$
m \gamma_{t}(G)-n \leq \gamma^{\mathrm{ID}}\left(G \square K_{m}\right) \leq m \gamma_{t}(G)+2 n-3 \gamma_{t}(G)
$$

Proof. To prove the upper bound, construct set D as follows. Take all the vertices in two copies of G, and take a minimum total dominating set in each of the remaining copies of G except one. Then in the terminology of Lemma 35 , each vertex is doubly dominated in its copy of K_{m}, and each X_{i} is empty except one, so D is an ID code.

To prove the lower bound, let D be an ID code and let D_{i} be the intersection of D with the $i^{\text {th }}$ copy G_{i} of G. Since we can form a total dominating set of G_{i} by adding to D_{i} one neighbor of each vertex in X_{i}, it follows that $\left|D_{i}\right| \geq \gamma_{t}(G)-\left|X_{i}\right|$.

On the other hand, it follows from Lemma 32 that $\sum_{i=1}^{m}\left|X_{i}\right| \leq n$. Thus,

$$
|D|=\sum_{i=1}^{m}\left|D_{i}\right| \geq m \gamma_{t}(G)-\sum_{i=1}^{m}\left|X_{i}\right| \geq m \gamma_{t}(G)-n
$$

as required.

Corollary 37. For any fixed isolate-free graph G of order $n, \gamma^{\mathrm{ID}}\left(G \square K_{m}\right)=m \gamma_{t}(G) \pm O(n)$.

For us, one obvious example is the case where G is the product of equal cliques. The values of $\gamma_{t}(G)$ do not appear to be known in general for three cliques or more. If one of the cliques is sufficiently large, then it is easy to determine the total domination number of the product of cliques. Indeed, we conclude with the following exact result.

Theorem 38. Let H be an isolate-free connected graph of order n. If $m>2 \ell$ and $\ell>2 n$, then

$$
\gamma^{\mathrm{ID}}\left(H \square K_{\ell} \square K_{m}\right)=n(m-1)
$$

Proof. Let $G=H \square K_{\ell}$ and $F=G \square K_{m}$. Define i mOD ℓ to be the unique integer s in the range 1 to ℓ such that $i-s$ is a multiple of ℓ. Let D be the set of vertices of F given by

$$
D=\{(v, i \operatorname{MOD} \ell, i) \mid v \in V(H), 1 \leq i \leq m-1\}
$$

Note that $|D|=n(m-1)$.
We claim that D satisfies the hypotheses of Lemma 35 . To see this, consider any vertex (v, j, i) in F. Since $m>2 \ell$, there are at least two values $1 \leq i_{1}, i_{2} \leq m-1$ such that $i_{1} \operatorname{MOD} \ell=$ $i_{2} \operatorname{MOD} \ell=j$. Thus (v, j, i) is doubly dominated within its copy of K_{m}. Furthermore, assume $i \neq m$. Then the vertex $(v, i \operatorname{MOD} \ell, i)$ is in D. So if $j \neq i \operatorname{MOD} \ell$, the vertex (v, j, i) has a neighbor in D in its G_{i}. On the other hand, if $j=i$ mOD ℓ, then the vertex (v, j, i) has some neighbor (w, j, i) in D, since H is isolate-free. It follows that all the X_{i} except X_{m} are empty, and so the projections \hat{X}_{i} are disjoint. Thus by Lemma 35, the set D is an ID code.

To prove the lower bound, we use Lemma 32. Let D be a minimum set of vertices of F such that the \hat{X}_{i} are disjoint. We can assume that we take no more than n vertices from each copy G_{i}, since taking n vertices is enough to ensure that X_{i} is empty.

Consider any G_{i} and let $A_{i}(v)$ be the copy of K_{ℓ} whose vertices are of the form $(v, ?, i)$. Assume that $A_{i}(v)$ does not contain a vertex of D. Then since G_{i} contains at most n vertices of D, it follows that at least $\ell-n$ vertices of $A_{i}(v)$ are in X_{i}. Since $\ell>2 n$, this means that more than half of $A_{i}(v)$ is in X_{i}.

Since the \hat{X}_{i} are disjoint, it follows that for every v, at most one of the $A_{i}(v)$ does not contain a vertex of D. That is, at least $m n-n$ of the $A_{i}(v)$ do contain a vertex of D, and so $|D| \geq m n-n$.

We suspect that the conclusion of the above theorem is true for a much wider range of clique-sizes.

Chapter 5

Edgeless graphs are the only

universal fixers

5.1 Introduction

This chapter is an expanded version of [39]. As all proofs are provided, we do not give specific references to this paper in this chapter. Recall from Chapter 2, given a graph G and any permutation π of $V(G)$, the prism of G with respect to π is the graph πG obtained by taking two disjoint copies of G, denoted G^{1} and G^{2}, and joining every $u \in V\left(G^{1}\right)$ with $\pi(u) \in V\left(G^{2}\right)$. That is, the edges between G^{1} and G^{2} form a perfect matching in πG. For any subset $A \subseteq V(G)$, we let $\pi(A)=\cup_{v \in A} \pi(v)$.

If π is the identity $\mathbf{1}_{G}$, then $\pi G \cong G \square K_{2}$, the Cartesian product of G and K_{2}. The graph $G \square K_{2}$ is often referred to as the prism of G, and the domination number of this graph has been studied by Hartnell and Rall in [24].

One can easily verify that $\gamma(G) \leq \gamma(\pi G) \leq 2 \gamma(G)$ for all π of $V(G)$. If $\gamma(\pi G)=\gamma(G)$ for some permutation π of $V(G)$, then we say G is a π-fixer. If G is a $\mathbf{1}_{G}$-fixer, then G is said to be a prism fixer. Moreover, if $\gamma(\pi G)=\gamma(G)$ for all π, then we say G is a universal fixer.

In 1999, Gu [21] conjectured that a graph G of order n is a universal fixer if and only if $G=\overline{K_{n}}$. Clearly if $G=\overline{K_{n}}$, then for any π of $V(G)$ we have $\gamma(\pi G)=n=\gamma(G)$. It is the other direction, the question of whether the edgeless graphs are the only universal fixers, that is far more
interesting and is the focus of this chapter. Over the past decade, it has been shown that a few classes of graphs do not contain any universal fixers. In particular, given a nontrivial connected graph G, Gibson [17] showed that there exists some π such that $\gamma(G) \neq \gamma(\pi G)$ if G is bipartite. Cockayne, Gibson, and Mynhardt [10] later proved this to be true when G is claw-free. Mynhardt and $\mathrm{Xu}[36]$ also showed if G satisfies $\gamma(G) \leq 3$, then G is not a universal fixer. Other partial results can be found in $[6,22]$. The purpose of this chapter is to prove Gu's conjecture, which we state as the following theorem.

Theorem 39. A graph G of order n is a universal fixer if and only if $G=\overline{K_{n}}$.
Although the following observation is stated throughout the literature, we give a short proof here for the sake of completeness.

Observation 40. Let G be a disconnected graph that contains at least one edge. If G is a universal fixer, then every component of G is a universal fixer.

Proof. Let G be a disconnected graph containing at least one edge, and let C_{1}, \cdots, C_{k} represent the components of G where $k \geq 2$. Suppose, for some $j \in\{1, \cdots, k\}$, that C_{j} is not a universal fixer. There exists a permutation $\pi_{j}: V\left(C_{j}\right) \rightarrow V\left(C_{j}\right)$ such that $\gamma\left(\pi_{j} C_{j}\right)>\gamma\left(C_{j}\right)$. Now define $\pi: V(G) \rightarrow V(G)$ by

$$
\pi(x)= \begin{cases}x & \text { if } x \in V(G) \backslash V\left(C_{j}\right) \\ \pi_{j}(x) & \text { if } x \in V\left(C_{j}\right)\end{cases}
$$

Note that πG is a disconnected graph which can be written as the disjoint union

$$
\left(\bigcup_{i \neq j} C_{i} \square K_{2}\right) \cup \pi_{j} C_{j} .
$$

Thus,

$$
\begin{aligned}
\gamma(\pi G) & =\gamma\left(\bigcup_{i \neq j} C_{i} \square K_{2}\right)+\gamma\left(\pi_{j} C_{j}\right) \\
& >\sum_{i \neq j} \gamma\left(C_{i} \square K_{2}\right)+\gamma\left(C_{j}\right) \\
& \geq \gamma(G) .
\end{aligned}
$$

Therefore, if there exists a permutation π of a component C_{j} of G such that C_{j} is not a π-fixer, then
G is not a universal fixer. The result follows.

Observation 40 allows us to consider only nontrivial connected graphs. Therefore, we focus on proving the following theorem.

Theorem 41. If a connected graph G is a universal fixer, then $G=K_{1}$.

5.2 Known Results

In order to study π-fixers, we will make use of the following results. A γ-set of G is a dominating set of G of cardinality $\gamma(G)$. The following results were shown by Hartnell and Rall [24], where some statements are in a slightly different form.

Lemma 42. [24, Theorem 4, pg. 395] Let G be a connected graph of order $n \geq 2$ and π a permutation of $V(G)$. Then $\gamma(\pi G)=\gamma(G)$ if and only if G has a γ-set D such that
(a) D admits a partition $D=D_{1} \cup D_{2}$ where D_{1} dominates $V(G) \backslash D_{2}$;
(b) $\pi(D)$ is a γ-set of G and $\pi\left(D_{2}\right)$ dominates $V(G) \backslash \pi\left(D_{1}\right)$.

Note that if a graph G is a universal fixer, then G is also a prism fixer. So applying Lemma 42 to the permutation $\mathbf{1}_{G}$, we get the following type of γ-set.

Definition 43. $A \gamma$-set D of G is said to be symmetric if D admits a partition $D=D_{1} \cup D_{2}$ where

1. D_{1} dominates $V(G) \backslash D_{2}$, and
2. D_{2} dominates $V(G) \backslash D_{1}$.

We write $D=\left[D_{1}, D_{2}\right]$ to emphasize properties 1 and 2 of this partition of D.

Lemma 44. [24, Proposition 6, pg. 398] If $D=\left[D_{1}, D_{2}\right]$ is a symmetric γ-set of G, then
(a) D is independent.
(b) G has minimum degree at least 2 .
(c) D_{1} and D_{2} are maximal 2-packings of G.
(d) For $i \in\{1,2\}, \sum_{x \in D_{i}} \operatorname{deg} x=|V(G)|-\gamma(G)$.

Theorem 45. [36, Theorem 4] The conditions below are equivalent for any nontrivial, connected graph G.
(a) G is a prism fixer.
(b) G has a symmetric γ-set.
(c) G has an independent γ-set D that admits a partition $D=\left[D_{1}, D_{2}\right]$ such that each vertex in $V(G) \backslash D$ is adjacent to exactly one vertex in D_{i} for $i \in\{1,2\}$, and each vertex in D is adjacent to at least two vertices in $V(G) \backslash D$.

We shall add to this terminology that if a symmetric γ-set $D=\left[D_{1}, D_{2}\right]$ exists such that $\left|D_{1}\right|=\left|D_{2}\right|$, then D is an even symmetric γ-set.

5.3 Proof of Theorem 41

The proof of Theorem 41 is broken into three cases depending on the type of symmetric γ-sets a graph possesses. The following property will be useful in each of these cases.

Property 46. Let $A=\left[A_{1}, A_{2}\right]$ and $B=\left[B_{1}, B_{2}\right]$ be symmetric γ-sets of G such that $\left|A_{1}\right| \leq\left|A_{2}\right|$ and $\left|B_{1}\right| \leq\left|B_{2}\right|$.
(a) If $\left|A_{1}\right|<\left|B_{1}\right|$, then $A_{2} \cap B_{1} \neq \emptyset$.
(b) If $\left|B_{1}\right|=\left|A_{1}\right|<\left|A_{2}\right|$, then $A_{2} \cap B_{2} \neq \emptyset$.

Proof. (a) By assumption, $\left|B_{1} \backslash A_{1}\right|>0$ and A_{1} dominates $V(G) \backslash A_{2}$. If $A_{2} \cap B_{1}=\emptyset$, then by the pigeonhole principle there exists $v \in A_{1}$ such that v dominates at least two vertices in B_{1}. This contradicts the fact that B_{1} is a 2-packing. Therefore, $A_{2} \cap B_{1} \neq \emptyset$.
(b) Since $\left|B_{2}\right|=\left|A_{2}\right|>\left|A_{1}\right|$, replacing B_{1} with B_{2} in the above argument gives the desired result.

We call the reader's attention to the fact that any universal fixer is inherently a prism fixer. Therefore, in each of the following proofs, we show that for every nontrivial connected prism fixer G there exists a permutation α such that $\gamma(\alpha G)>\gamma(G)$. Furthermore, the results of Mynhardt and $\mathrm{Xu}[36]$ allow us to consider only connected graphs with domination number at least 4.

To prove the next three theorems, we introduce the following notation. Let G be a graph and let π be a permutation of $V(G)$. For each vertex $v \in V(G)$, we let v^{1} represent the copy of v in G^{1} and v^{2} represent the copy of v in G^{2}; conversely, for $i=1,2$, if $v^{i} \in V\left(G^{i}\right)$, let v be the corresponding vertex of G. If $A \subseteq V(G)$, we define $A^{i}=\left\{v^{i}: v \in A\right\}$ for $i=1,2$. Conversely, if $A^{i} \in V\left(G^{i}\right)$, then $A=\left\{v \in V(G): v^{i} \in A^{i}\right\}, i=1,2$. If B is a set of vertices in the graph πG, we write $B=X^{1} \cup Y^{2}$, for some symbols X and Y, where $X^{1}=B \cap V\left(G^{1}\right)$ and $Y^{2}=B \cap V\left(G^{2}\right)$. Thus we navigate between G and πG : the absence of superscripts indicates vertices or sets of vertices in G, and the superscript $i \in\{1,2\}$ indicates the corresponding vertices or sets of vertices in the subgraph G^{i} of πG.

Theorem 47. Let G be a nontrivial connected prism fixer with $\gamma(G) \geq 4$. If G has a symmetric γ-set that intersects every even symmetric γ-set of G nontrivially, then G is not a universal fixer.

Proof. Let $D=\left[D_{1}, D_{2}\right]$ be a symmetric γ-set of G that intersects every even symmetric γ-set of G nontrivially. By Lemma $44(\mathrm{c}), D_{1}$ and D_{2} are 2-packings. Assume without loss of generality that $\left|D_{1}\right| \geq\left|D_{2}\right|$ and let $D_{1}=\left\{x_{1}, \ldots, x_{k}\right\}$. Since D_{1} is nonempty and a 2-packing, there exists a vertex $u \in N\left(x_{1}\right)$ such that $u \notin \bigcup_{i=2}^{k} N\left(x_{i}\right)$. Define the permutation α of $V(G)$ by $\alpha\left(x_{i}\right)=x_{i+1}$, $i=1, \ldots, k-1, \alpha\left(x_{k}\right)=u, \alpha(u)=x_{1}$, and $\alpha(v)=v$ for $v \in V(G) \backslash\left(D_{1} \cup\{u\}\right)$. Figure 5.1 illustrates αG with this particular permutation.

Figure 5.1: αG where D is a symmetric γ-set that nontrivially intersects every even symmetric γ-set of G

Suppose $\gamma(\alpha G)=\gamma(G)$ and let $Q^{1} \cup R^{2}$ be a γ-set of αG. Let S^{1} consist of the vertices of G^{1} that are not dominated by Q^{1}. Then S^{1} is dominated by R^{2}, that is, for each $s^{1} \in S^{1}, \alpha(s) \in R$ and thus $\alpha(S) \subseteq R$. Suppose $r^{2} \in R^{2}$ is adjacent to $a^{1} \in V\left(G^{1}\right)-S^{1}$. Then $\alpha^{-1}(r)=a$ and Q^{1} dominates a^{1}; hence each vertex of G^{1} is dominated by a vertex in Q^{1} or a vertex in $R^{2} \backslash\left\{r^{2}\right\}$, implying $\left(Q \cup \alpha^{-1}(R)\right) \backslash\{a\}$ is a dominating set of G of cardinality less than $\gamma(\alpha G)=\gamma(G)$, which is impossible. Hence the neighbor in G^{1} of each vertex in R^{2}, as determined by α, belongs to S^{1}, that is $\alpha^{-1}(R) \subseteq S$. It follows that $\alpha(S)=R$. Similarly, if T^{2} consists of the vertices of G^{2} that are not dominated by R^{2}, then $\alpha(Q)=T$. Furthermore, S and T are 2-packings, otherwise G would also have a dominating set of cardinality less than $\gamma(G)$. We consider four cases.

Case 1 Assume that $S \cap\left(D_{1} \cup\{u\}\right)=\emptyset$ and $Q \cap\left(D_{1} \cup\{u\}\right)=\emptyset$. By definition of $\alpha, \alpha(v)=v$ for each $v \in S \cup Q$. Since $\alpha(S)=R, R=S$. Similarly, $Q=T$. Since Q^{1} dominates $V\left(G^{1}\right) \backslash S^{1}$ and R^{2} dominates $V\left(G^{2}\right) \backslash T^{2}$, it follows that T dominates $V(G) \backslash S$ and S dominates $V(G) \backslash T$. Hence $[S, T]$ is a symmetric γ-set of G, where we may assume without loss of generality that $|S| \leq|T|$.

If $|S|=\gamma(G) / 2$, then $[S, T]$ is an even symmetric γ-set of G. By the choice of $D, D \cap(S \cup T) \neq \emptyset$. Since $\alpha(v)=v$ for each $v \in S \cup Q=S \cup T$, we know that $D \cap(S \cup T) \subseteq D$. Hence, by the assumptions of Case $1, D \cap(S \cup T) \subseteq D_{2}$. Without loss of generality, assume there exists $y \in D_{2} \cap T$. By Lemma 44(a), y does not dominate any vertex in D_{1}. Now each vertex in D_{1} is either dominated by a vertex in T or is contained in S. But $S \cap D_{1}=\emptyset$ and y does not dominate any vertex in D_{1}. Hence $T \backslash\{y\}$ dominates D_{1}. But $|T|=\gamma(G) / 2$, so by the choice of $D_{1},|T \backslash\{y\}|<\gamma(G) / 2 \leq\left|D_{1}\right|$. Therefore D_{1} is not a 2-packing, contradicting Lemma 44(c). Hence assume $|S|<\gamma(G) / 2$. Letting S represent A_{1} and D_{1} represent B_{1} in Property 46(a), and recalling that $\left|D_{1}\right| \geq \gamma(G) / 2$, we see that $T \cap D_{1} \neq \emptyset$. But then $Q \cap D_{1} \neq \emptyset$, contrary to the assumption of Case 1 . Hence Case 1 cannot occur.

Case 2 Assume that $u \in Q \cup S$. First suppose that $u \in Q$. Then $\alpha(u)=x_{1} \in T$. Since $u x_{1} \in E(G)$ and T is a 2-packing, $u \notin T$. Hence $u \in N(R)$ by definition of T. Let v be a vertex in R adjacent to u. Since x_{1} is the only vertex of D_{1} adjacent to $u, \alpha(v)=v$. Since $\alpha(S)=R$, it follows that $v \in S$. But now $u v$ joins $u \in Q$ to $v \in S$, contrary to the definition of S.

Hence we may assume that $u \in S$. Then $\alpha(u)=x_{1} \in R$. Since $u x_{1} \in E(G)$ and S is a 2-packing, $x_{1} \notin S$. Hence $x_{1} \in N(Q)$ by definition of S. Let v be a vertex in Q adjacent to
x_{1}. As above, $\alpha(v)=v$, and since $\alpha(Q)=T, v \in T$. Therefore there exists an edge between R and T, contrary to the definition of T.

Case 3 Assume for some $j \in\{2, \ldots, k-1\}$ that $x_{j} \in Q \cup S$. Suppose we can show that $x_{1}, u \in Q \cap R$. Since $\alpha(Q)=T$ and $u \in Q$, it fill follow that $\alpha(u)=x_{1} \in T$, contrary to the fact that $R \cap T=\emptyset$. Hence this is what we do next.

Since $x_{j} \in Q \cup S, \alpha\left(x_{j}\right)=x_{j+1} \in R \cup T$. Suppose there exists a vertex $v \in R$ such that $v x_{j} \in E(G)$. By the choice of $u, v \neq u$. Since D_{1} is independent, $v \notin D_{1}$. Therefore $v \in V(G) \backslash\left(D_{1} \cup\{x\}\right)$ and so $\alpha(v)=v$, which implies that $v \in S$. Since S is a 2-packing, $x_{j} \notin S$, and since no vertex in Q dominates a vertex in $S, x_{j} \notin Q$, contrary to the assumption of Case 3. Hence no such vertex v exists and thus, by definition of R and $T, x_{j} \in R \cup T$. Therefore $\alpha^{-1}\left(x_{j}\right)=x_{j-1} \in Q \cup S$. A similar argument shows that x_{j+1} is not adjacent to any vertex in Q and so $x_{j+1} \in Q \cup S$. We can now apply the same argument inductively to $x_{j+1} \in Q \cup S$ and $x_{j-1} \in Q \cup S$ until we arrive at the conclusion that $\left\{x_{1}, x_{2}, \ldots, x_{k}\right\} \subseteq(Q \cup S) \cap(R \cup T)$. Then $\alpha^{-1}\left(x_{1}\right)=u \in(Q \cup S)$ and $\alpha\left(x_{k}\right)=u \in(R \cup T)$. Since x_{1} and u are adjacent, the definitions of Q and S imply that x_{1} and u are both in Q or both in S; but since S is a 2-packing, $x_{1}, u \in Q$. Similarly, $x_{1}, u \in R$ and thus $x_{1}, u \in Q \cap R$, as required.

Case 4 Assume that either x_{1} or x_{k} is in $Q \cup S$. Applying similar arguments as in Case 3 yields the same contradiction. Therefore, this case cannot occur either.

Thus, no such dominating set $Q^{1} \cup R^{2}$ exists for αG and the result follows.

If a nontrivial connected prism fixer G with $\gamma(G) \geq 4$ has at most one even symmetric γ-set, then the premise of Theorem 47 is true and we immediately obtain the following corollary.

Corollary 48. Let G be a nontrivial connected prism fixer with $\gamma(G) \geq 4$. If G contains at most one even symmetric γ-set, then G is not a universal fixer.

Theorem 47 also implies that if a nontrivial connected universal fixer G with $\gamma(G) \geq 4$ exists, then for each even symmetric γ-set D of G, there exists another even symmetric γ-set E of G such that $D \cap E=\emptyset$. We now consider graphs that contain at least two pairwise disjoint even symmetric γ-sets. Note that in this case $\gamma(G)$ is an even integer.

Theorem 49. Let G be a nontrivial connected prism fixer with $\gamma(G)=2 k$ where $k \geq 2$. If G contains at least two disjoint even symmetric γ-sets, then G is not a universal fixer.

Proof. Let D_{1}, \ldots, D_{m} be a maximal set of pairwise disjoint even symmetric γ-sets. Since D_{i} is symmetric, for each $1 \leq i \leq m$ we can write $D_{i}=\left[X_{i}, Y_{i}\right]$ such that X_{i} dominates $V(G) \backslash Y_{i}$ and Y_{i} dominates $V(G) \backslash X_{i}$. We let $X=\bigcup_{i} X_{i}$.

We know that each X_{i} is a 2-packing of size k. Thus, we can index the vertices of X_{i} as $x_{i, 1}, x_{i, 2}, \ldots, x_{i, k}$ such that $x_{i+1, j}$ is adjacent to $x_{i, j}$ for $1 \leq i \leq m-1$ and $1 \leq j \leq k$.

In order to define our permutation of $V(G)$, we first assign an additional index to X_{m}, since we will map X_{m} to X_{1}. Note that we have already indexed X_{m} such that $x_{m, j} \in N\left(x_{m-1, j}\right)$ for $j=1, \ldots, k$, and this index will be used to map X_{m-1} to X_{m}. Now for $1 \leq j \leq k$, define a_{j} such that $x_{m, a_{j}} \in N\left(x_{1, j}\right)$, and this index will be used to map X_{m} to X_{1}. We may define the following permutation of $V(G)$:

$$
\alpha(v)= \begin{cases}x_{i+1, j} & \text { if } v=x_{i, j} \text { for } 1 \leq j \leq k \text { and } 1 \leq i \leq m-1 \\ x_{1, j+1} & \text { if } v=x_{m, a_{j}} \text { for } 1 \leq j \leq k-1 \\ x_{1,1} & \text { if } v=x_{m, a_{k}} \\ v & \text { otherwise. }\end{cases}
$$

Notice in Figure 5.2 that when we consider the indices of X_{m} as $x_{m, a_{j}} \in N\left(x_{1, j}\right)$, we can write the vertices of X_{1} and X_{m} as a cyclic permutation

$$
\beta=\left(x_{m, a_{1}}, x_{1,2}, x_{m, a_{2}}, x_{1,3}, \ldots, x_{m, a_{k}}, x_{1,1}\right)
$$

where for each $1 \leq j \leq k$:
(1) $\beta\left(x_{1, j}\right)=x_{m, a_{j}}$; i.e. $x_{m, a_{j}}$ is adjacent to the vertex immediately preceding it in β, and
(2) $\beta\left(x_{m, a_{j}}\right)=\alpha\left(x_{m, a_{j}}\right)=x_{1, j+1}$; i.e. α maps $x_{m, a_{j}}$ to the vertex immediately following it in β.

Furthermore, by the definitions of α and $a_{j}, 1 \leq j \leq k, \beta$ cannot be written as a product of subcycles that exhibit the same properties.

Suppose $\gamma(\alpha G)=2 k$ and let $Q^{1} \cup R^{2}$ be a γ-set of αG. Define S^{1} and T^{2} as in Theorem 47 with all the associated properties.

Note that $\alpha(v)=v$ for all other vertices of G not depicted
Figure 5.2: Specific case when $m=3$ and $k=4$

We first claim that $Q \cap X \neq \emptyset$. To see this, suppose neither S nor Q contains a vertex of X. By definition of $\alpha, T=\alpha(Q)=Q$ and $R=\alpha(S)=S$. Thus Q and R are disjoint 2-packings and $[Q, R]$ is a symmetric γ-set of G.

By the symmetry of αG we need only to consider two cases. If $|Q|=k=|R|$, then $[Q, R]$ is an even symmetric γ-set. By the choice of $D_{1}, \ldots, D_{m}, D_{i} \cap(Q \cup R) \neq \emptyset$ for some $1 \leq i \leq m$. Because $\alpha(Q \cup R)=Q \cup R$, the definition of α implies that $D_{i} \cap(Q \cup R) \subseteq Y_{i}$. Assume without loss of generality that $y_{i, j} \in Q$ for some $1 \leq j \leq k$. Then each vertex of X_{i} is dominated by a vertex of $Q \backslash\left\{y_{i, j}\right\}$ or is contained in S. But by the assumption, $S \cap X=\emptyset$, hence $Q \backslash\left\{y_{i, j}\right\}$ dominates X_{i}. Since $\left|Q \backslash\left\{y_{i, j}\right\}\right|=k-1<\left|X_{i}\right|$, this contradicts X_{i} being a 2-packing. Therefore either $Q \cap X \neq \emptyset$, and we are done, or $S \cap X \neq \emptyset$. In the latter case, we interchange the labels G^{1} and G^{2} and obtain $Q \cap X \neq \emptyset$.

On the other hand, if $|Q|<k$, then $S \cap X_{i} \neq \emptyset$ for each $1 \leq i \leq m$, since each X_{i} is a 2-packing and every vertex of G is either dominated by Q or is contained in S. This implies for each $1 \leq i \leq m$ that $R \cap X_{i} \neq \emptyset$ by definition of α. As before, simply relabel G^{1} and G^{2} so that $|Q| \geq k$ and obtain $Q \cap X \neq \emptyset$.

We next claim that $T \cap X_{1} \neq \emptyset$. From above, we may assume $|Q| \geq k$. If $|Q|>k$, then $|R|<k$. This implies that $T \cap X_{1} \neq \emptyset$, since X_{1} is a 2-packing and every vertex of G is either dominated by R or is contained in T. So assume that $|Q|=k$, and let $x_{i, a} \in Q$ for some $1 \leq i \leq m$ and $1 \leq a \leq k$. If $i=m$, then by definition of α we have $T \cap X_{1} \neq \emptyset$. So assume $i \neq m$. Since Y_{i} is a 2-packing and no vertex of Y_{i} is adjacent to a vertex of X_{i}, there exist at least $\left|Q \cap D_{i}\right|$ vertices in $S \cap Y_{i}$. Moreover, since each vertex of Y_{i} is mapped to itself under α, we know there exist at least $\left|Q \cap D_{i}\right|$ vertices in $R \cap Y_{i}$ as well. This, together with the fact that $|Q|=k=|R|$, gives

$$
\begin{aligned}
\left|R \backslash Y_{i}\right| & \leq k-\left|Q \cap D_{i}\right| \\
& \leq k-1
\end{aligned}
$$

Therefore, since X_{i} is a 2-packing and each vertex of G is either dominated by R or is contained in $T, T \cap X_{i} \neq \emptyset$. So assume $x_{i, b} \in T$ for some $1 \leq b \leq k$. If $i=1$ or if $m=2$, then we are done with the proof of this claim. So assume $m>2$ and $i \notin\{1, m\}$. By definition of $\alpha, x_{i-1, b} \in Q$. Applying the above argument inductively, eventually we have $T \cap X_{1} \neq \emptyset$. Let $r=\left|T \cap X_{1}\right|>0$.

We next claim that $r<k$. To see this, suppose that $r=k$. Then $X_{1} \subseteq T$. Because X_{1}
dominates $V(G) \backslash Y_{1}, R \subseteq Y_{1}$. If $R \subset Y_{1}$, then T contains X_{1} and some vertex $y_{1, j} \in Y_{1}$. Since Y_{1} dominates $V(G) \backslash X_{1}$, some $x_{1, i}$ and $y_{1, j}$ have a common neighbor in $V(G) \backslash D_{1}$, contrary to T being a 2-packing. Therefore $R=Y_{1}$ and so $T=X_{1}$. Then $Q=\alpha^{-1}(T)=\alpha^{-1}\left(X_{1}\right)=X_{m}$ and $S=\alpha^{-1}(R)=Y_{1}$. By the choice of the $D_{i}, D_{1} \cap D_{m}=\emptyset$. Hence $X_{m}=Q$ dominates $Y_{1}=S$, contradicting the fact that, by definition, $S=V(G) \backslash N[Q]$. Thus, we may conclude that $r<k$.

Let $x_{1, b_{1}}, x_{1, b_{2}}, \ldots, x_{1, b_{r}}$ be the vertices of $T \cap X_{1}$. There exist exactly r vertices in $Q \cap X_{m}$; call them $x_{m, c_{1}}, x_{m, c_{2}}, \ldots, x_{m, c_{r}}$. We claim for some $x_{1, b_{j}} \in T \cap X_{1}$ that $x_{1, b_{j}} \notin N\left(Q \cap X_{m}\right)$. So assume not; that is, assume $\left\{x_{1, b_{1}}, x_{1, b_{2}}, \ldots, x_{1, b_{r}}\right\} \subset N\left(Q \cap X_{m}\right)$. This implies there exists some relabeling of the b_{j} 's and c_{j} 's such that $x_{m, c_{j}} \in N\left(x_{1, b_{j}}\right)$ and $\alpha\left(x_{m, c_{j}}\right)=x_{1, b_{j}+1}$ for $b_{j} \in\{1, \ldots, k-1\}$ and $\alpha\left(x_{m, c_{j}}\right)=x_{11}$ if $c_{j}=a_{k}$ where a_{k} is the index first given to x_{m} to define α. Consequently, there exists some subcycle of β consisting of the vertices $x_{1, b_{1}}, x_{1, b_{2}}, \ldots, x_{1, b_{r}}, x_{m, c_{1}}, x_{m, c_{2}}, \ldots, x_{m, c_{r}}$ such that for each $1 \leq j \leq r$:
(1) $x_{m, c_{j}}$ is adjacent to the vertex immediately preceding it within its subcycle; and
(2) $x_{m, c_{j}}$ is mapped under α to the vertex immediately following it within its subcycle.

However, this contradicts the construction of α unless $r=k$, which we know to be false. Thus, for some $x_{1, b_{j}} \in T \cap X_{1}, x_{1, b_{j}} \in S$ or $x_{1, b_{j}} \in N\left[Q \backslash X_{m}\right]$. If $x_{1, b_{j}} \in S$, then by definition

Figure 5.3: Specific case when $\left|T \cap X_{1}\right|=3$
of $\alpha, x_{2, b_{j}} \in R$. Since $x_{1, b_{j}} \in N\left(x_{2, b_{j}}\right)$, this implies there exists an edge between R and T. This contradiction shows $x_{1, b_{j}} \in N\left[Q \backslash X_{m}\right]$. So assume $v \in Q$ where $x_{1, b_{j}} \in N[v]$. If $\alpha(v)=v$, then v and $x_{1, b_{j}}$ are both in T, which contradicts T being a 2-packing. On the other hand, if $\alpha(v) \neq v$, then $v=x_{i, d}$ for some $i \neq m$ and $1 \leq d \leq k$.

Case 1 Assume that $i=1$. Since X_{i} is a 2-packing, it follows that $v=x_{1, b_{j}} \in Q$. Thus, $x_{2, b_{j}} \in T$ by definition of α. But $x_{1, b_{j}}$ was assumed to be in T, so this violates T being a 2-packing.

Therefore, this case cannot occur.

Case 2 Assume that $i \notin\{1, m\}$. Immediately this implies that $m>2$. Furthermore, $\alpha\left(x_{i, d}\right)=x_{i+1, d}$, and we have $x_{i, d} \in N\left(x_{1, b_{j}}\right) \cap N\left(x_{i+1, d}\right)$, which contradicts T being a 2 -packing, as shown in Figure 5.3. Thus, this case cannot occur either.

Having considered all cases, we have shown such a dominating set $Q^{1} \cup R^{2}$ of αG does not exist of order $2 k$. Hence, the result follows.

We now use the results of this section to prove Theorem 41.
Proof of Theorem 41. Assume that G is a connected universal fixer of order $n \geq 2$. By Mynhardt and Xu [36], we may assume that $\gamma(G) \geq 4$. Since G is a universal fixer, G is a prism fixer. Theorem 47 implies that for every even symmetric γ-set D of G, there exists an even symmetric γ-set D^{\prime} of G such that $D \cap D^{\prime}=\emptyset$. However, this contradicts Theorem 49, which states that G cannot contain a pair of disjoint even symmetric γ-sets. Therefore, no such connected universal fixer of order at least 2 exists. That is, if G is a connected universal fixer, then $G=K_{1}$.

In conclusion, we know that any component of a universal fixer must be an isolated vertex. It follows that edgeless graphs are the only universal fixers.

Bibliography

[1] Y. Ben-Haim and S. Litsyn. Exact minimum density of codes identifying vertices in the square grid. SIAM J. Discrete Math., 19(1):69-82, 2005.
[2] N. Bertrand, I. Charon, O. Hudry, and A. Lobstein. Identifying and locating-dominating codes on chains and cycles. European J. Combin., 25(7):969-987, 2004.
[3] N. Bertrand, I. Charon, O. Hudry, and A. Lobstein. 1-identifying codes on trees. Australas J. Combin., 31:21-35, 2005.
[4] U. Blass, I. Honkala, and S. Litsyn. On binary codes for identification. J. Combin. Des., 8(2):151-156, 2000.
[5] U. Blass, I. Honkala, and S. Litsyn. Bounds on identifying codes. Discrete Math., 241:119-128, 2001.
[6] A.P. Burger and C.M. Mynhardt. Regular graphs are not universal fixers. Discrete Math., 310(2):364-368, 2010.
[7] C. Chen, C. Lu, and Z. Miao. Identifying codes and locating-dominating sets on paths and cycles. Discrete Appl. Math., 159(15):1540-1547, 2011.
[8] V. Chepoi. On distances in benzenoid systems. J. Chem. Inf. Comp. Sci., 36:1169-1172, 1996.
[9] V. Chepoi and S. Klavžar. The wiener index and the szeged index of benzenoid systems in linear time. J. Chem. Inf. Comp. Sci., 37:752-755, 1997.
[10] E.L. Cockayne, R.G. Gibson, and C.M. Mynhardt. Claw-free graphs are not universal fixers. Discrete Math., 309(1):128-133, 2009.
[11] G. Cohen, I. Honkala, and A. Lobstein. On codes identifying vertices in the two-dimensional square lattice with diagonal. IEEE Trans. Comp., 50(2):174-176, 2001.
[12] M. El-Zahar and C.M. Pareek. Domination number of products of graphs. Ars. Combin., 31:223-227, 1991.
[13] G. Exoo, T. Laihonen, and S. Ranto. New bounds on binary identifying codes. Discrete Appl. Math., 156:2250-2263, 2008.
[14] M. Feng, M. Xu, and K. Wang. Identifying codes of lexicographic product of graphs. Electron. J. Combin., 19(4):P56, 2012.
[15] F. Foucaud. Identifying codes in special graph classes. Masters thesis. PhD thesis, Université Bordeaux 1, France, June, 2009.
[16] F. Foucaud, S. Gravier, R. Naserasr, A. Parreau, and P. Valicov. Identifying codes in line graphs. J. Graph Theory, To appear.
[17] R.G. Gibson. Bipartite graphs are not universal fixers. Discrete Math., 308(24):5937-5943, 2008.
[18] W. Goddard and K. Wash. ID codes in cartesian products of cliques. J. Combin. Math. Combin. Comput., 85:97-106, 2013.
[19] S. Gravier, J. Moncel, and A. Semri. Identifying codes of cycles. European J. Combin., 27(5):767-776, 2006.
[20] S. Gravier, J. Moncel, and A. Semri. Identifying codes of cartesian product of two cliques of the same size. Electron. J. Combin., 15(1):7 pp, 2008. 4.
[21] W. Gu. Communication with S. T. Hedetniemi. Southeastern Conference on Combinatorics, Graph Theory, and Computing., 1999.
[22] W. Gu and K. Wash. Bounds on the domination number of permutation graphs. J. of Interconnection Networks., 10(3):205-217, 2009.
[23] R. Hammack, W. Imrich, and S. Klavžar. Handbook of Product Graphs, Second Edition. CRC Press, 2011.
[24] B. Hartnell and D. Rall. On dominating the Cartesian product of a graph and K_{2}. Discuss. Math. Graph Theory, 24:389-402, 2004.
[25] I. Honkala and A. Lobstein. On identifying codes in binary Hamming spaces. J. Combin. Theory Ser. A, 99(2):232-243, 2002.
[26] S. Janson and T. Laihonen. On the size of identifying codes in binary hypercubes. J. Combin. Theory Ser. A, 116(5):1087-1096, 2009.
[27] V. Junnila and T. Laihonen. Optimal identifying codes in cycles and paths. Graphs Combin., 28(4):469-481, 2012.
[28] M. Karpovsky, K. Chakrabarty, and L.B. Levitin. On a new class of codes for identifying vertices in graphs. IEEE Trans. Inform. Theory, 44(2):599-611, 1998.
[29] M. Karpovsky, K. Chakrabarty, L.B. Levitin, and D. Avresky. On the covering of vertices for fault diagnosis in hypercubes. Inform. Process. Lett., 69(2):99-103, 1999.
[30] M. Kaufmann and K. Mehlhorn. Routing problems in grid graphs. in: B. Korte, L. Lovász, H.J Promel, and A. Schrijver:. Paths, Flows, and VLSI-Layout, Algorithms and Combinatorics., vol. 9:165-184, 1990.
[31] J.L. Kim and S.J. Kim. Identifying codes in q-ary hypercubes. Bull. Inst. Combin. Appl., 59:93-102, 2010.
[32] S. Klavžar. Domination and independent domination in direct product of graphs. LaBRI Bordeaux, France, 2011.
[33] A. Lobstein. http://www.infres.enst.fr/~lobstein/debutbibidetlocdom.pdf.
[34] J. Moncel. Monotonicity of the minimum cardinality of an identifying code in the hypercube. Discrete Appl. Math., 154(6):898-899, 2006.
[35] J. Moncel. On graphs on n vertices having an identifying code of cardinality $\left\lceil\log _{2}(n+1)\right\rceil$. Discrete Appl. Math., 154:2032-2039, 2006.
[36] C.M. Mynhardt and Z. Xu. Domination in prisms of graphs: universal fixers. Utilitas Mathematica, 78:185-201, 2009.
[37] D. Rall and K. Wash. Identifying codes of the direct product of two cliques. European J. Combin., 36:159-171, 2014.
[38] P. Slater. Locating dominating sets and locating-dominating sets. Graph Theory, Combinatorics and Applications: Proceedings of the Seventh Quadrennial International Conference on the Theory and Applications of Graphs., 2:1073-1079, 1995.
[39] K. Wash. Edgeless graphs are the only universal fixers. Czech. Math. J., 2014, accepted.
[40] M. Xin, K. Thulasiraman, and X. Hu. Identifying codes of cycles with odd orders. European J. Combin., 29(7):1717-1720, 2008.

