369 research outputs found

    Learning Two-Stream CNN for Multi-Modal Age-related Macular Degeneration Categorization

    Full text link
    This paper tackles automated categorization of Age-related Macular Degeneration (AMD), a common macular disease among people over 50. Previous research efforts mainly focus on AMD categorization with a single-modal input, let it be a color fundus image or an OCT image. By contrast, we consider AMD categorization given a multi-modal input, a direction that is clinically meaningful yet mostly unexplored. Contrary to the prior art that takes a traditional approach of feature extraction plus classifier training that cannot be jointly optimized, we opt for end-to-end multi-modal Convolutional Neural Networks (MM-CNN). Our MM-CNN is instantiated by a two-stream CNN, with spatially-invariant fusion to combine information from the fundus and OCT streams. In order to visually interpret the contribution of the individual modalities to the final prediction, we extend the class activation mapping (CAM) technique to the multi-modal scenario. For effective training of MM-CNN, we develop two data augmentation methods. One is GAN-based fundus / OCT image synthesis, with our novel use of CAMs as conditional input of a high-resolution image-to-image translation GAN. The other method is Loose Pairing, which pairs a fundus image and an OCT image on the basis of their classes instead of eye identities. Experiments on a clinical dataset consisting of 1,099 color fundus images and 1,290 OCT images acquired from 1,099 distinct eyes verify the effectiveness of the proposed solution for multi-modal AMD categorization

    Integrin Ī²3 Mediates the Endothelial-to-Mesenchymal Transition via the Notch Pathway

    Get PDF
    Background/Aims: Neointimal hyperplasia is responsible for stenosis, which requires corrective vascular surgery, and is also a major morphological feature of many cardiovascular diseases. This hyperplasia involves the endothelial-to-mesenchymal transition (EndMT). We investigated whether integrin Ī²3 can modulate the EndMT, as well as its underlying mechanism. Methods: Integrin Ī²3 was overexpressed or knocked down in human umbilical vein endothelial cells (HUVECs). The expression of endothelial markers and mesenchymal markers was determined by real-time reverse transcription PCR (RT-PCR), immunofluorescence staining, and western blot analysis. Notch signaling pathway components were detected by real-time RT-PCR and western blot analysis. Cell mobility was evaluated by wound-healing, Transwell, and spreading assays. Fibroblast-specific protein 1 (FSP-1) promoter activity was determined by luciferase assay. Results: Transforming growth factor (TGF)-Ī²1 treatment or integrin Ī²3 overexpression significantly promoted the EndMT by downregulating VE-cadherin and CD31 and upregulating smooth muscle actin Ī± and FSP-1 in HUVECs, and by enhancing cell migration. Knockdown of integrin Ī²3 reversed these effects. Notch signaling was activated after TGF-Ī²1 treatment of HUVECs. Knockdown of integrin Ī²3 suppressed TGF-Ī²1-induced Notch activation and expression of the Notch downstream target FSP-1. Conclusion: Integrin Ī²3 may promote the EndMT in HUVECs through activation of the Notch signaling pathway

    Satisfactory short-term outcomes of totally laparoscopic ileostomy reversal compared to open surgery in colorectal cancer patients

    Get PDF
    BackgroundRecently, totally laparoscopic (TLAP) surgery has suggested its potential on ileostomy reversal. This study aimed to compare the short-term outcomes between TLAP and traditional open ileostomy reversal.Patients and methodsFrom September 2016 to September 2021, 107 eligible patients underwent TLAP (nā€‰=ā€‰48) or open (nā€‰=ā€‰59) loop ileostomy reversal were retrospectively enrolled. Surgical parameters, postoperative recovery and complications were identified and compared between TLAP technique vs. open surgery.ResultsThe operation time and estimated blood loss showed no obvious difference between TLAP and open group. However, TLAP reversal significantly decreased the incision length (4.5cm vs. 6cm, Pā€‰<ā€‰0.001). Furthermore, patients underwent TLAP surgery showed quicker first ground activities (1 day vs. 2 days, Pā€‰<ā€‰0.001), faster first flatus passage (2 days vs. 3 days, Pā€‰=ā€‰0.004) and shorter postoperative stay (5 days vs. 7 days, Pā€‰=ā€‰0.007). More importantly, postoperative complications were significantly reduced after TLAP reversal (3 cases vs. 10 cases, Pā€‰=ā€‰0.026). Further logistic regression analyses also indicated the TLAP technique was associated with lower incidence of complications (OR=3.316, CI, 1.118ā€“9.835; Pā€‰=ā€‰0.031).ConclusionsTLAP surgery is competitive in promoting postoperative recovery as well as reducing complications compared to the traditional open ileostomy reversal

    A novel diagnostic model for predicting immune microenvironment subclass based on costimulatory molecules in lung squamous carcinoma

    Get PDF
    There is still no ideal predictive biomarker for immunotherapy response among patients with non-small cell lung cancer. Costimulatory molecules play a role in anti-tumor immune response. Hence, they can be a potential biomarker for immunotherapy response. The current study comprehensively investigated the expression of costimulatory molecules in lung squamous carcinoma (LUSC) and identified diagnostic biomarkers for immunotherapy response. The costimulatory molecule gene expression profiles of 627 patients were obtained from the The Cancer Genome Atlas, GSE73403, and GSE37745 datasets. Patients were divided into different clusters using the k-means clustering method and were further classified into two discrepant tumor microenvironment (TIME) subclasses (hot and cold tumors) according to the immune score of the ESTIMATE algorithm. A high proportion of activated immune cells, including activated memory CD4 T cells, CD8 T cells, and M1 macrophages. Five CMGs (FAS, TNFRSF14, TNFRSF17, TNFRSF1B, and TNFSF13B) were considered as diagnostic markers using the Least Absolute Shrinkage and Selection Operator and the Support Vector Machine-Recursive Feature Elimination machine learning algorithms. Based on the five CMGs, a diagnostic nomogram for predicting individual tumor immune microenvironment subclasses in the TCGA dataset was developed, and its predictive performance was validated using GSE73403 and GSE37745 datasets. The predictive accuracy of the diagnostic nomogram was satisfactory in all three datasets. Therefore, it can be used to identify patients who may benefit more from immunotherapy

    Modelling of the effect of ELMs on fuel retention at the bulk W divertor of JET

    Get PDF
    Effect of ELMs on fuel retention at the bulk W target of JET ITER-Like Wall was studied with multi-scale calculations. Plasma input parameters were taken from ELMy H-mode plasma experiment. The energetic intra-ELM fuel particles get implanted and create near-surface defects up to depths of few tens of nm, which act as the main fuel trapping sites during ELMs. Clustering of implantation-induced vacancies were found to take place. The incoming flux of inter-ELM plasma particles increases the different filling levels of trapped fuel in defects. The temperature increase of the W target during the pulse increases the fuel detrapping rate. The inter-ELM fuel particle flux refills the partially emptied trapping sites and fills new sites. This leads to a competing effect on the retention and release rates of the implanted particles. At high temperatures the main retention appeared in larger vacancy clusters due to increased clustering rate

    Real-time plasma state monitoring and supervisory control on TCV

    Get PDF
    In ITER and DEMO, various control objectives related to plasma control must be simultaneously achieved by the plasma control system (PCS), in both normal operation as well as off-normal conditions. The PCS must act on off-normal events and deviations from the target scenario, since certain sequences (chains) of events can precede disruptions. It is important that these decisions are made while maintaining a coherent prioritization between the real-time control tasks to ensure high-performance operation. In this paper, a generic architecture for task-based integrated plasma control is proposed. The architecture is characterized by the separation of state estimation, event detection, decisions and task execution among different algorithms, with standardized signal interfaces. Central to the architecture are a plasma state monitor and supervisory controller. In the plasma state monitor, discrete events in the continuous-valued plasma state are modeled using finite state machines. This provides a high-level representation of the plasma state. The supervisory controller coordinates the execution of multiple plasma control tasks by assigning task priorities, based on the finite states of the plasma and the pulse schedule. These algorithms were implemented on the TCV digital control system and integrated with actuator resource management and existing state estimation algorithms and controllers. The plasma state monitor on TCV can track a multitude of plasma events, related to plasma current, rotating and locked neoclassical tearing modes, and position displacements. In TCV experiments on simultaneous control of plasma pressure, safety factor profile and NTMs using electron cyclotron heating (ECH) and current drive (ECCD), the supervisory controller assigns priorities to the relevant control tasks. The tasks are then executed by feedback controllers and actuator allocation management. This work forms a significant step forward in the ongoing integration of control capabilities in experiments on TCV, in support of tokamak reactor operation

    Impact of fast ions on density peaking in JET: fluid and gyrokinetic modeling

    Get PDF
    The effect of fast ions on turbulent particle transport, driven by ion temperature gradient (ITG)/ trapped electron mode turbulence, is studied. Two neutral beam injection (NBI) heated JET discharges in different regimes are analyzed at the radial position Ļt_{t}=0.6, one of them an L-mode and the other one an H-mode discharge. Results obtained from the computationally efficient fluid model EDWM and the gyro-fluid model TGLF are compared to linear and nonlinear gyrokinetic GENE simulations as well as the experimentally obtained density peaking. In these models, the fast ions are treated as a dynamic species with a Maxwellian background distribution. The dependence of the zero particle flux density gradient (peaking factor) on fast ion density, temperature and corresponding gradients, is investigated. The simulations show that the inclusion of a fast ion species has a stabilizing influence on the ITG mode and reduces the peaking of the main ion and electron density profiles in the absence of sources. The models mostly reproduce the experimentally obtained density peaking for the L-mode discharge whereas the H-mode density peaking is significantly underpredicted, indicating the importance of the NBI particle source for the H-mode density profile

    Current Research into Applications of Tomography for Fusion Diagnostics

    Get PDF
    Retrieving spatial distribution of plasma emissivity from line integrated measurements on tokamaks presents a challenging task due to ill-posedness of the tomography problem and limited number of the lines of sight. Modern methods of plasma tomography therefore implement a-priori information as well as constraints, in particular some form of penalisation of complexity. In this contribution, the current tomography methods under development (Tikhonov regularisation, Bayesian methods and neural networks) are briefly explained taking into account their potential for integration into the fusion reactor diagnostics. In particular, current development of the Minimum Fisher Regularisation method is exemplified with respect to real-time reconstruction capability, combination with spectral unfolding and other prospective tasks
    • ā€¦
    corecore