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There is still no ideal predictive biomarker for immunotherapy response among

patients with non-small cell lung cancer. Costimulatory molecules play a role in

anti-tumor immune response. Hence, they can be a potential biomarker for

immunotherapy response. The current study comprehensively investigated the

expression of costimulatorymolecules in lung squamous carcinoma (LUSC) and

identified diagnostic biomarkers for immunotherapy response. The

costimulatory molecule gene expression profiles of 627 patients were

obtained from the The Cancer Genome Atlas, GSE73403, and

GSE37745 datasets. Patients were divided into different clusters using the

k-means clustering method and were further classified into two discrepant

tumor microenvironment (TIME) subclasses (hot and cold tumors) according to

the immune score of the ESTIMATE algorithm. A high proportion of activated

immune cells, including activated memory CD4 T cells, CD8 T cells, and

M1 macrophages. Five CMGs (FAS, TNFRSF14, TNFRSF17, TNFRSF1B, and

TNFSF13B) were considered as diagnostic markers using the Least Absolute

Shrinkage and Selection Operator and the Support Vector Machine-Recursive

Feature Elimination machine learning algorithms. Based on the five CMGs, a

diagnostic nomogram for predicting individual tumor immune

microenvironment subclasses in the TCGA dataset was developed, and its

predictive performance was validated using GSE73403 and

GSE37745 datasets. The predictive accuracy of the diagnostic nomogram

was satisfactory in all three datasets. Therefore, it can be used to identify

patients who may benefit more from immunotherapy.
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Introduction

Lung cancer is the second most commonly diagnosed tumor

and is the most frequent cause of cancer-related mortality

worldwide (Sung et al., 2021). Lung squamous carcinoma

(LUSC) is one of the major subtypes of lung cancer, which

accounts for approximately 25%–30% of all lung cancer cases

(Singh et al., 2021). Due to hardly any driver gene observed in

most patients with LUSC, LUSC patients can obtain limited

benefits from targeted therapy (Miller and Hanna, 2021).

In the last few years, immune checkpoint inhibitors (ICIs)

including the programmed cell death protein 1 (PD1),

programmed cell death ligand 1 (PD-L1), and the cytotoxic

T-lymphocyte antigen 4 (CTLA4) inhibitors, have rapidly

changed the therapeutic landscape of different malignancies,

such as melanoma, lung carcinoma, and nasopharyngeal

cancer (Isaacs et al., 2021). As well as the NSCLC, several

large randomized controlled trials, such as KeyNote-407,

KeyNote-042, CheckMate-017, and OAK studies support ICIs

as first-line therapy for advanced LUSC (Brahmer et al., 2015;

Rittmeyer et al., 2017; Paz-Ares et al., 2018; Mok et al., 2019).

Besides, CheckMate-816 trial also proved immunotherapy can

prolong progression-free survival for local advanced NSCLC

(Forde et al., 2021).

Despite the unprecedented durable response rates achieved

with ICIs, most patients with LUSC do not benefit from cancer

immunotherapy (de novo resistance) and will even develop

recurrence after the initial response (acquired resistance) (Insa

et al., 2021; Shang et al., 2021). Identifying indicator to select

candidates benefitting from immunotherapy has become a hot

area. PD-L1 is the most commonly used indicator for identifying

candidates for ICI treatment in clinical practice. Different clinical

trials assessed its predictive value and associations between its

expression and major pathological response. KeyNote-042 study

enrolled patients with PD-L1 expression ≥1% and found only

patients with PD-L1 expression ≥50% obtained survival benefit

from pembrolizumab (Mok et al., 2019). CheckMate-816 trial

revealed that patients with PD-L1 expression ≥50% had higher

complete pathological rate than other patients in

immunotherapy arm (Forde et al., 2021). However, the use of

PD-L1 as a biomarker had some limitations. A multicenter

observational study demonstrated PD-L1 expression is not an

indicator for LUSC patients with first-line pembrolizumab

(Doroshow et al., 2021). In addition, spatial and temporal

heterogeneity and inconsistent binary cutoff point of PD-L1

expression also limit its use as a biomarker (Mino-Kenudson

et al., 2022). Tumor mutational burden (TMB), which is another

potential predictor of response to combined immunotherapy, has

been explored. Based on the KeyNote-189, pembrolizumab was

approved for treatment of patients with advanced solid tumors

(including LUSC) with TMB>10, while CheckMate-026 also

found the association between TMB and survival (Carbone

et al., 2017; Garassino et al., 2020). Nevertheless, the

predictive value of TMB was only showed in ICI

monotherapy and lost in immunochemotherapy (Sholl et al.,

2020). Besides TMB may be inconsistent when using different

targeted gene panels or whole exome sequencing (Mino-

Kenudson et al., 2022). And the issue of inconsistent binary

cutoff point is also a limitation of TMB (Garassino et al., 2020).

Therefore, novel predictors of treatment response should be

identified to appropriately select patients who can receive

immunotherapies with the aim to design individualized

strategies.

The era of immunotherapy has promoted the increasing

parse of immune system function and immunosuppressive

status generated in the tumor immune microenvironment

(TIME), which comprised multiple immune, stromal, and

mesenchymal cells, cytokines, and chemokines (Singh et al.,

2020; Zhang et al., 2020). TIME plays an important role in

the processes of tumor initiation, progress, development, and

metastasis (Binnewies et al., 2018). Naïve T cells are activated via

two indispensable signals before they attack neoantigens, among

which is the non-specific costimulatory signal (Bluestone, 1995).

Tumor cells commonly release wrong messages to T cells and

block the recognition of costimulatory signals by altering

costimulatory molecular structures and expressions in TIME.

Further, they induce an immunosuppressive TIME (Sanmamed

and Chen, 2019), which is characterized by exhaustion and

anergy of T cells. Subsequently, immunosuppressive TIME

could enable tumor cells to evade host immune-mediated

elimination (Hanahan and Weinberg, 2011). Costimulatory

molecules include the B7-CD28 family. Among them, eight

members (CD80, CD86, PD-L1, PD-L2, ICOSLG, B7-H3, B7x,

and HHLA2) are classified under the B7 family, and five

molecules (CD28, CTLA4, ICOS, PD-1, and TMIGD2) belong

to the CD28 family (Janakiram et al., 2015). The tumor necrosis

factor (TNF) family has 19 molecules belonging to the TNF

ligand superfamily (TNFSF) and 29 molecules to the TNF

receptor superfamily (TNFRSF) (Croft and Siegel, 2017).

Costimulatory molecules play an important role in immune

cell proliferation, differentiation, activation, survival, and

functions (Kraehenbuehl et al., 2021). Moreover, they can be

possible novel targets or can be added to the current

immunotherapeutic regiments (Croft et al., 2013; Schildberg

et al., 2016). The predictive model based on costimulatory

molecule genes (CMGs) for the individual predictions of

prognosis and immunotherapy response has been explored in

multiple tumors, including lung adenocarcinoma, prostate
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cancer, and head and neck squamous cell carcinoma (Zhang

et al., 2020; Aye et al., 2021; Ge et al., 2021). However, their

functions and predictive value in LUSC remain poorly

understood. Thus, there is a need to systematically explore

CMGs in patients with LUSC.

Therefore, to explore the predictive value of the

abovementioned 60 CMGs, the current study aimed to

analyze LUSC gene expression profiles using datasets collected

from The Cancer Genome Atlas (TCGA) and the Gene

Expression Omnibus (GEO) databases (Zhang et al., 2020).

Via k-means clustering, patients with LUSC were divided

into two different immune subclasses (cold and hot tumors).

Next, the CIBERSORT algorithm (Newman et al., 2015) was

used to compare differences in 22 immune cells infiltrating the

TIME between cold and hot LUSC tumors. Then, we combined

two main machine learning algorithms (Least Absolute

Shrinkage and Selection Operator (LASSO) (Li and Sillanpää,

2012) and Support Vector Machine-Recursive Feature

Elimination (SVM-RFE) (Sanz et al., 2018), with several

bioinformatic methods to screen out diagnostic biomarkers

among 60 candidate CMGs in patients with LUSC. Based on

these CMGs, a diagnostic nomogram for predicting individual

immune environment subclasses in patients with LUSC was

established, and its predictive performance and clinical value

were validated.

Materials and methods

Extraction and standardization of gene
expression dataset

We downloaded the count data and clinical information of

LUSC project from the TCGA database (https://tcga-data.nci.

nih.gov/tcga/), and the count data were log2 transformed for

subsequent analysis. We also obtained the log2 transformed data

of gene expression array from two GEO databases (https://www.

ncbi.nlm.nih.gov/geo/) (GSE73403, GSE37745 and GSE93157)

using the “GEO query” package. The gene expression datasets

were normalized with the “SVA” and “limma” packages to

remove the batch effect from biotechnology. Samples loss to

follow-up or missing clinical information were excluded. The

TCGA, GSE73403, and GSE37745 datasets included 492, 69, and

66 cancer samples, respectively. The GSE93157 dataset included

13 LUSC treated with immunotherapy. Five of 13 patient were

progressive disease, which was defined as not response. Three

patients with partial response, and five patients with stable

disease were seen as response. TCGA and GSE73403 datasets

were used to identify the diagnostic CMGs. The diagnostic

nomogram was developed based on TCGA dataset,

GSE73403 and GSE37745 datasets were used for validating the

nomogram. GSE93157 dataset was used for exploring the

predictive value of diagnostic CMGs in immunotherapy.

Further, we obtained 60 costimulatory molecules, including

13 molecules belonging to the B7-CD28 family and 47 to the

TNF family, according to a previous study (Supplementary Table

S1) (Zhang et al., 2020).

Patient clustering based on CMGs

Patients with LUSC were clustered using the unsupervised

consensus clustering method, the k-means machine learning

algorithm with the “Cluster” R package. First, the

corresponding optimal cluster numbers in all three datasets

were determined using the “factoextra” R package. Moreover,

we performed principal component analysis after k-means

clustering using the “factoextra” R package to present the

visualization results of patient clustering and to evaluate

clustering efficacy. Next, the “ESTIMATE” R package

(Yoshihara et al., 2013) was used to calculate and compare

differences in tumor purity, immune and stromal scores

among different clusters in the TCGA, GSE73403, and

GSE37745 datasets. Further, patients with LUSC in these three

datasets were stratified into the “hot” and “cold” tumor

subclasses based on their immune and stromal scores, which

could reflect tumor purity and infiltration levels of immune cells

(Yoshihara et al., 2013).

Landscape of immune cells infiltrating the
TIME

We analyzed the standardized CMG expression profiles of

the TCGA, GSE73403, and GSE37745 datasets and used the

CIBERSORT algorithm with perm set to 1000 to explore the

landscape of 22 immune cells infiltrating (Newman et al., 2015)

the TIME between patients in the “hot” and “cold” tumor

subclasses. Besides, another algorithm, microenvironment cell

populations-counter (MCP-counter) was also performed to

estimate abundance of 10 types of cells between “hot” and

“cold” tumor subclasses.

Functional annotation and pathway
enrichment analyses

Gene set enrichment analysis (GSEA, https://www.gsea-

msigdb.org/gsea/index.jsp) was conducted on patients with

LUSC in the “hot” versus “cold” tumor subclasses via the Java

GSEA (version 4.0.1) using the Kyoto Encyclopedia of Genes and

Genomes (KEGG) pathway in C2 and Gene Ontology (GO)

terms in C5 to perform the functional annotation and potential

enrichment analyses (Subramanian et al., 2005). The false

discovery rate was set at < 0.25, and a p-value of <0.05 was

normalized as significant enrichment.
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Identification of diagnostic biomarkers
among candidate CMGs

In the TCGA and GSE73403 datasets, we initially utilized the

LASSO logistic regression method with the “glmnet” R package

to screen out diagnostic biomarkers among candidate CMGs at

the optimal value of log lambda with the smallest classification

error (35). In addition, the SVM-RFE machine learning

algorithm based on the support vector machine was used to

identify the best diagnostic biomarkers from all candidate CMGs

by subtracting the feature vector determined using SVM with the

“e1071” and “caret” packages. Then, we overlapped diagnostic

biomarkers identified using the abovementioned two machine

learning algorithms with the “scMerge” package, and the same

CMGs in the abovementioned two datasets were finally utilized

in the logistic regression analysis to identify the CMG

biomarkers.

Development and validation of the
diagnostic nomogram based on CMG
biomarkers

Using the abovementioned CMG biomarkers, a diagnostic

nomogram was developed in the TCGA training dataset using

the “rms” R package for predicting individualized TIME

subclasses among patients with LUSC. The predictive

performance and clinical value of this CMG-based diagnostic

nomogram was further assessed and validated using the receiver

operating characteristic (ROC) and calibration curves both in the

TCGA training and validation datasets.

Statistical analysis

The CMG expression profiles of patients with LUSC in these

three datasets were listed as raw and standardized. The TCGA

dataset was defined as the training cohort and the GSE73403 and

GSE37745 datasets as the validation cohort. SVM model using

sigmoid kernel function was performed to investigate the

diagnostic value of CMGs in anti-PD1 therapy. All machine

learning algorithms and bioinformatic analyses were performed

using the R software (version 4.0.1, Vanderbilt University,

Nashville, TN). A p-value of <0.05 was considered statistically

significant unless specified otherwise.

Results

Gene expression dataset acquisition and
standardization

Figure 1 shows the flow chart of the current study. We

annotated the gene expression profiles of the three datasets.

Then, all 60 CMGs were merged with these microarray

matrixes. Next, the TCGA dataset included 492 LUSC samples

(59 CMGs), and the GSE73403 and GSE37745 datasets

comprised 69 (57 CMGs) and 66 (58 CMGs) LUSC

FIGURE 1
Flowchart of the study design.
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samples, respectively. Then, the “SVA” and “limma” R packages

were used to standardize the expression profiles of CMGs

in the three datasets. Finally, there were still 55 CMGs

available for the subsequent analysis, which included

12 members belonging to the B7-CD28 family and

43 members to the TNF family.

Patient clustering based on CMGs

To investigate the potential functions and clinical value of the

CMGs in patients with LUSC, the unsupervised consensus

clustering methods were used for patient classification. The

optimal cluster numbers of the three datasets were determined

FIGURE 2
LUSC patient-clustering based on costimulatorymolecule genes (CMGs). (A) The curve of the total within the sumof squared error curve for the
corresponding cluster number k in TCGA dataset; (B) The principal component analysis (PCA) plot of clustered patients in TCGA dataset; (C) The
curve of the total within the sum of squared error curve for the corresponding cluster number k in the GSE73403 dataset; (D) The PCA plot of
clustered patients in the GSE73403 dataset; (E) The curve of the total within the sum of squared error curve for the corresponding cluster
number k in the GSE37745 dataset; (F) The PCA plot of clustered patients in the GSE37745 dataset.
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via k-means clustering analysis, which was visualized as curves of

the total of the sum of squared error for the corresponding cluster

numbers of k. Figures 2A, C, E depict that k values of 5, 8, and five

were the best for the TCGA, GSE73403, and GSE 37745 datasets,

respectively. Next, principal component analysis was performed

to assess the credibility of these cluster numbers. Principal

component analysis showed that patients with LUSC could be

classified into five different clusters at k = 5 in the TCGA dataset

(Figure 2B), eight clusters at k = 7 in the GSE73403 dataset

(Figure 2D), and five clusters at k = 5 in the GSE37745 dataset

(Figure 2F).

Then, the “ESTIMATE” package (Yoshihara et al., 2013) was

used to calculate and compare differences in tumor purity and

stromal and immune cell infiltrations in the TIME among

FIGURE 3
Comparison of tumor-stromal and immune scores among different LUSC patient clusters. The comparison of stromal scores (A) and immune
scores (B) among different clusters in TCGA dataset; The comparison of stromal scores (C) and immune scores (D) among different clusters in the
GSE73403 dataset; The comparison of stromal scores (E) and immune scores (F) among different clusters in the GSE37745 dataset.
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different clusters of patients with LUSC. The different clusters in

the three datasets significantly differed in terms of tumor purity

(TCGA: Supplementary Figure S1A, GSE73403: Supplementary

Figure S1B, and GSE37745: Supplementary Figure S1C). In

addition, there were significant differences in terms of tumor

stromal and immune scores in multiple clusters in the TCGA

(Figures 3A, B), GSE73403 (Figures 3C, D), and GSE37745

(Figures 3E, F) datasets. Accordingly, patients with LUSC in

clusters two and five in the TCGA dataset were classified under

the “cold” tumor subclass and those in clusters 1, 3, and four

under the “hot” tumor subclass. In the GSE73403 dataset,

patients in clusters 1,6 and seven were categorized under the

“hot” tumor subclass and those in other clusters under the “cold”

tumor subclass. In the GSE37745 dataset, patients in clusters two

to four were classified under the “cold” tumor and those in

clusters one and five under the “hot” tumor subclass.

Subsequently, we compared differences in tumor purity and

stromal and immune cell infiltrations between the “cold” and the

“hot” LUSC subclasses. As shown in Figure 4, the “hot” LUSC

tumors had significantly higher stromal and immune scores than

the in “cold” LUSC tumors in the TCGA (Figures 4A, B),

GSE73403 (Figures 4C, D), and GSE37745 (Figures 4E, F)

datasets. Conversely, the tumor purity in the “cold” LUSC

tumor subclasses was significantly higher than that in the

“hot” LUSC tumor subclasses in the three datasets (TCGA:

Supplementary Figure S2A, GSE73403: Supplementary Figure

S2B, and GSE37745 Supplementary Figure S2C).

Landscape of immune cells infiltrating the
TIME

Based on the gene expression profiles, the CIBERSORT

algorithm was utilized to estimate the infiltration landscape of

22 immune cells in the TIME of patients with LUSC. In the TCGA

dataset, there were significant differences in the proportions of

immune cells, including CD8 T cells (p = 0.003), CD4 memory

resting T cells (p < 0.001), CD4 memory activated T cells (p <
0.001), regulatory T cells (Tregs) (p = 0.005), M0macrophages (p =

0.006), and M1 macrophages (p < 0.001), between the “cold” and

“hot” tumors. The percentages of CD8 T cells, CD4 memory

resting T cells, CD4 memory activated T cells, Tregs, and

M1 macrophages (p < 0.05) were higher in the “hot” than in

the “cold” LUSC tumors. Meanwhile, more M0 macrophages

infiltrated the “cold” tumors (p = 0.006) (Figure 5A). In the

GSE73403 dataset, there were more significant infiltrations of

naïve B cells (p = 0.017), CD8 T cells (p = 0.01), CD4 memory

activated T cells (p = 0.02), andM1macrophages (p = 0.004) in the

“hot” than in the “cold” LUSC tumors (Figure 5C). In the

GSE37745 dataset, the percentages of multiple immune cell

FIGURE 4
Calculation and comparison of tumor-stromal and immune scores between different TIME subclasses in LUSC, where yellow represents
patients in the “hot” tumor group and green shows the patients in the “cold” tumor group. The comparison of stromal scores (A) and immune scores
(B) between “hot” (clusters 1, 3, and 4) and the “cold” (clusters 2, and 5) tumor groups in TCGA dataset; the comparison of stromal scores (C) and
immune scores (D) between the “hot” (clusters 1, 6, and 7)and the “cold” (clusters 2, 3, 4, five and 8) tumor groups in the GSE73403 dataset; The
comparison of stromal scores (E) and immune scores (F) between the “hot” (clusters 1, and 5) and the “cold” (clusters 2 to 4) tumor groups in the
GSE37745 dataset.
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FIGURE 5
Evaluation and visualization of the 22 immune cell type infiltration landscape between different tumor groups. The left violin plot depicts
infiltration disparities among immune cell types between the “hot” tumor group (red) and the “cold” tumor group (blue) in TCGA (A), GSE73403 (C),
and GSE37745 datasets (E). The correlation heat map (right) shows the correlation of immune cells between two groups in TCGA (B), GSE73403 (D),
and GSE37745 datasets (F). The number within colored squares represents the strength of the correlation; the larger is the number, the stronger
is the correlation. Blue represents a negative correlation and red represents a positive correlation.
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infiltration, such as the CD4 memory activated T cells (p < 0.001),

M1 macrophages (p = 0.009), and follicular helper T cells (p =

0.022), significantly differed between the “cold” and “hot” LUSC

tumors. The infiltration of CD4 memory activated T cells and

M1macrophages was higher in the “hot” than in the “cold” tumors

(p < 0.05) (Figure 5E).

In addition, we analyzed the association of 22 immune cells in

LUSC tissues. The results were depicted as a correlation heatmap,

as shown in Figures 5B, D, F. The number within colored squares

(blue: negative, red: positive) represents the correlational strength.

That is, when the number is larger, the correlation was stronger.

Figure 5B shows a strong positive correlation between

CD4 memory-activated T cells and M1 macrophages (Cor =

0.37), CD4 memory-activated T cells, and CD8 T cells (Cor =

0.44) in the TCGA dataset. Similar to the GSE73403 dataset, the

infiltration of CD4 memory-activated T cells was positively

correlated with CD8 T cells (Cor = 0.43) and M1 macrophages

(Cor = 0.44) (Figure 5D). In the GSE37745 dataset, CD8 T cells

(Cor = 0.50) and M1 macrophages (Cor = 0.34) were positively

associated with CD4 memory activated T cells (Figure 5F).

To confirm these findings, MCP-counter was also used to

investigate the 10 types of immune cells infiltrated in the TIME

between “cold” and “hot” tumors. As shown in Supplementary

Figure S3, almost all immune cells infiltrated more in “hot”

LUSCs among three datasets, especially the anti-tumor immune

cells, such asCD8 T cells (p < 0.001), cytotoxic lymphocytes (p <
0.001) and B cells (p < 0.001).

Functional annotation and pathway
enrichment analyses

To explore potential functions and enriched pathways among

patients with LUSC, we conducted GO and KEGG enrichment

analyses of the “cold” versus “hot” LUSC tumor subclasses.

Compared with the “cold” LUSC tumors, the “hot” LUSC

FIGURE 6
Functional analysis for the “hot” tumor and the “cold” tumor based on costimulatorymolecule genes (CMGs). (A,C,E) The Kyoto Encyclopedia of
Genes and Genomes (KEGG) enrichment analysis in TCGA, GSE73403, and GSE37745 datasets, respectively; (B,D,F)Gene Ontology (GO) analysis for
biological processes in TCGA, GSE73403, and GSE37745 datasets, respectively.
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FIGURE 7
The selection of diagnostic markers from among candidate costimulatory molecule genes (CMGs). In Figures 7A, B, D, E, the lower abscissa is
the log lambda value, while the upper abscissa is the number of CMGs with non-zero coefficient; the vertical axis represents the Least Absolute
Shrinkage and Selection Operator (LASSO) coefficient of CMGs, and each curve shows the variation trajectory of the coefficients of each gene. (A)
Determination of the number of CMGs with non-zero coefficients in TCGA dataset; (B) LASSO coefficient profiles of 31 candidate CMGs after
the 10-fold cross-validation in TCGA dataset; (C) Support Vector Machine-Recursive Feature Elimination (SVM-RFE) method to identify markers in
TCGA dataset; (D) Definition of the number of CMGs with non-zero coefficients in the GSE43403 dataset; (E) LASSO coefficient profiles of
11 candidate CMGs after the 10-fold cross-validation in the GSE73403 dataset; (F) SVM-RFEmethod to identify markers in the GSE73403 dataset; (G)
Venn diagram presents the overlapping diagnostic markers identified by LASSO and SVM-REF algorithms.
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tumors were significantly enriched in the B and T cell receptor

signaling pathways, chemokine signaling pathway,

cytokine–cytokine receptor signaling pathway, JAK–STAT

signaling pathway, and natural killer cell-mediated signaling

pathway in the three datasets (TCGA: Figure 6A, GSE73403:

Figure 6C, and GSE37745: Figure 6E). The results of GO analysis

of the biological processes revealed that the “hot” LUSC tumor

was mainly correlated with the regulation of T cell differentiation

and activation, NK cell activation, and immune responses in the

TCGA dataset (Figure 6B). In the GSE73403 dataset, the positive

regulation of cytokine production and immune effector process

were primarily enriched in patients with LUSC with “hot” TIME

(Figure 6D). In the GSE37745 dataset, the “hot” LUSC tumors

were mainly correlated with the activation of lymphocyte cells

and immune response, T cell receptor signaling pathway, antigen

processing and presentation, and positive regulation of immune

response (Figure 6F).

Identification of diagnostic biomarkers
among candidate CMGs

The TCGA and GSE73403 were used to select the CMG

biomarkers from 55 CMGs to identify the diagnostic biomarkers.

In the TCGA dataset, we initially identified 31 biomarkers from

55 candidate CMGs using the LASSO logistic regression method

(Figures 7A, B). The SVM-RFE machine learning algorithm was

used to screen out 24 CMG biomarkers from all 55 candidates

(Figure 7C). Then, we overlapped all diagnostic markers

identified with the abovementioned algorithms in the TCGA,

and 17 CMG markers remained (Figure 7G).

Then, in the GSE73403 dataset, 11 CMGs from 55 candidates

were identified as putative diagnostic markers using the LASSO

logistic regression method (Figures 7D, E). Meanwhile, the SVM-

RFE machine learning algorithms were used to identify 43 CMGs

(Figure 7F). Among them, 11 CMGs were overlapping

(Figure 7G). Then, five candidate CMGs identified from the

abovementioned two datasets were used in the logistic regression

analysis to select the final diagnostic markers. Then, five CMGs

(FAS, TNFRSF14, TNFRSF17, TNFRSF1B, and TNFSF13B) were

considered the final diagnostic markers (Figure 7G).

Supplementary Table S2 presents all CMGs analyzed in this

phase. In addition, the heatmaps revealed that these five CMGs

were up-regulated in “hot” tumor in TCGA, GSE73403 and

GSE37745 datasets (Supplementary Figure S4).

Development and validation of the
diagnostic nomogram based on CMG
biomarkers

Based on the abovementioned CMG biomarkers, including

FAS, TNFRSF14, TNFRSF17, TNFRSF1B, and TNFSF13B, we

constructed a diagnostic nomogram for predicting individualized

TIME subclass in patients with LUSC based on the TCGA

training dataset (Figure 8A). According to our nomogram,

each CMG marker could obtain a score in the point line, and

the total score of each patient with LUSC could be calculated

based on the biomarker expressions of the three CMGs. By

identifying the total score using the hut tumor scale, the

probability of patients with LUSC presenting with “hot” TIME

could be predicted.

Furthermore, to evaluate the diagnostic performance and

accuracy of the nomogram, we respectively drew the ROC and

calculated the area under the curve (AUC) in the TCGA

(Figure 8B), GSE73403 (Figure 8C), and GSE37745

(Figure 8D) datasets. The AUC of TCGA, GSE73403, and

GSE37745 was 0.984, 0.968, and 0.882, respectively, which

demonstrated a good diagnostic efficacy of the nomogram.

Moreover, we compared the AUC between the nomogram

and PD-L1 expression in the three datasets (Figures 8B–D).

Results showed that the diagnostic performance of the

nomogram was better than PD-L1 expression in three datasets

(TCGA: 0.984 versus 0.770; GSE73403: 0.984 versus 0.451;

GSE37745: 0.882 versus 0.693). Figures 8E–G show the

calibration curves, whose axes represented the actual

probability (Y-axis) and the probability predicted by the

nomogram (X-axis). Results showed a favorable consistency

between the virtual and predicted probability in all three

datasets. Then, we investigated whether the combination of

CMGs and PD-L1/TMB could enhance the predictive

performance of the diagnostic model. We found the

combination of CMGs and PD-L1 could enhance the

predictive performance in three datasets but this improvement

was not apparent (AUC, TCGA: 0.986; GSE73403: 0.980;

GSE37745: 0.957). However, combination of CMGs, PD-L1

and TMB could not enhance the predictive performance in

TCGA dataset (AUC, 0.986) (Supplementary Figure S5).

Diagnostic value of the five CMGs in
immunotherapy

In the GSE93157 dataset, the SVM model based on the five

CMGs demonstrated a high precision in predicting response to

anti-PD1 therapy of LUSC patients. The response was correctly

predicted in 11 of 13 (84.6%) patients (Figure 9A). The AUC of

the SVM model was also higher than PD-L1 (0.825 versus 0.800)

(Figure 9B).

Discussion

In recent years, cancer immunotherapy has significantly

improved. Moreover, owing to the development of ICIs,

patients with LUSC without driver gene mutations presented
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with better survival outcomes and therapeutic landscape (Paz-

Ares et al., 2018; Forde et al., 2021; Miller and Hanna, 2021; Zhao

et al., 2021). However, only few patients with LUSC benefited

from immunotherapy due to de novo or acquired resistance to

ICIs (Insa et al., 2021; Shang et al., 2021). Increasing evidence

showed that immune anergic is rendered by

immunosuppression. Thus, T cells get exhausted, and immune

cells cannot accurately recognize tumor antigen (Hanahan and

Weinberg, 2011). In this study, we systematically investigated the

clinical value of costimulatory molecules in predicting the TIME

subclass among patients with LUSC. Initially, they were clustered

based on their CMG expression pattern using the unsupervised

clustering method. Next, patients in the three datasets were

stratified into the “hot” and “cold” tumor subclasses according

to differences in immune and stromal scores in the TIME among

different clusters. Immune infiltration analyses revealed that

“hot” tumors had a higher proportion of anti-tumor immune

cells, such as CD8+ T cell, activated memory CD4+ T cell, gamma

delta T cell, and M1 macrophage. The functional and pathway

enrichment analysis further revealed that “hot” LUSC tumors

were significantly enriched in the B and T cell receptor signaling

pathways. Moreover, they were mainly associated with the

regulation of T cell differentiation and activation and immune

responses. Furthermore, we screened out five CMGs, including

FAS, TNFRSF14, TNFRSF17, TNFRSF1B, and TNFSF13B. They

were found to be diagnostic biomarkers based on an analysis

using two machine learning algorithms (LASSO and SVM-RFE)

and several bioinformatics. Subsequently, using the

abovementioned CMG biomarkers, we established a diagnostic

nomogram for predicting individualized TIME subclasses among

FIGURE 8
Development and validation of the diagnostic nomogram. (A) A nomogram for diagnosing individualized immune environment subclass. The
receiver operating characteristic (ROC) curve for the diagnostic efficacy verification of nomogram and PD-L1 in TCGA (B), GSE73403 (C), and
GSE37745 datasets (D); The calibration plots of the diagnostic accuracy validation in three datasets (E–G).
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patients with LUSC. In addition, whether our nomogram had

good predictive efficacy and satisfactory clinical value was

evaluated and validated in the TCGA and two independent

validation datasets. Furthermore, the SVM model revealed the

predictive value of these five CMGs in immunotherapy.

Therefore, our CMG-based diagnostic nomogram could be a

practical tool for stratifying the TIME subclasses of patients with

LUSC and might provide useful therapeutic recommendations

for ICI therapy. To the best of our knowledge, this is the first and

the most comprehensive study that investigated the TIME

subclass prediction value of CMGs among patients with LUSC.

Anti-PD-L1, anti-PD-1, or anti-CTLA4 antibodies can block

the PD1-PD-L1 or the CD86/CTLA4 axes, which recover

cytotoxic T-cell response against tumors (Fife and Bluestone,

2008). PD-L1 is the most widely used biomarker in

immunotherapy. However, it still has some limitations

(Doroshow et al., 2021; Mino-Kenudson et al., 2022).

Recently, immune infiltration has been considered a novel

biomarker for predicting the prognosis and response of

patients receiving ICI therapy (Fridman et al., 2012; Gentles

et al., 2015; Oliver et al., 2018; Zuo et al., 2020). Kirfel et al.

compared the expression of PD-L1 and immune cell infiltration

via immunohistochemical staining in 138 NSCLC samples

(Kirfel et al., 2021). Results showed that PD-L1-positive

tumors had “cold” immune infiltration in TIME. Meanwhile,

PD-L1-negative tumors had “hot” immune infiltration in TIME.

The poor predictive accuracy of PD-L1 can be explained by the

separation of PD-L1 expression and immune infiltration status.

In this study, our nomogram had a better performance in

predicting “hot” tumors than PD-L1 alone.

Fas cell surface death receptor is encoded by the FAS gene, and it

plays an important part in the apoptotic signal pathway in several

cells. Fas ligand, which is the ligand of this receptor, is expressed

restrictedly in immune cells (Zhang et al., 2005). The binding of the

Fas ligand to the Fas receptor leads to cell apoptosis (Müschen et al.,

2000). TNFRSF14 is transmembrane glycoprotein belonging to the

TNF receptor family. The activation of TNFRSF14 participates in

the process of immune cell survival and differentiation, promotes

T cell proliferation and functions, and increases interferon

production and the anti-tumor effect of NK cells (Marsters et al.,

1997; Tamada et al., 2000; Šedý et al., 2013). TNFRSF17 is a B cell

maturation antigen, which also belongs to the TNF receptor family.

It plays an essential role in B cell proliferation and differentiation

into plasma cells and prolonging the survival of plasma cells (Xu and

Lam, 2001; Benson et al., 2008). TNFRSF1B, a TNF receptor, is

associated with T-cell responses, and it participates in protective

immunity, inflammatory disease, and autoimmune diseases (So and

Ishii, 2019). TNFSF13B, also known as B-cell-activating factor, is a

member of the TNF family, and it is expressed by dendritic cells,

monocytes, and macrophages (Batten et al., 2000). Moreover, it is

necessary in B cell survival and maturation, and it stimulates T cells

by costimulating the signal pathway (Huard et al., 2001).

Previous studies have presented immune-related biomarkers for

predicting the prognosis of patients with lung cancer, which is

closely correlated with TIME. Zhang et al. established a five CMG

signature based on 10 datasets, and patients were then divided into

the high- and low-risk groups. Results showed that TIMEs differed

in the low-risk groups (Zhang et al., 2020). Peng et al. usedmultiplex

immunofluorescence to investigate 26 types of immune cells and

clustered three groups of patients with discrepant TIME. Further,

FIGURE 9
The SVM model of 5 CMGs for predicting response of immunotherapy in GSE93157. (A) The classification plot of the SVM model brown area:
predicting probability of not response, yellow area: predicting probability of response, pink cross: actual not response, black cross or circle: actual
response; (B) The receiver operating characteristic (ROC) curve for the diagnostic efficacy verification of SVM model and PD-L1 in GSE93157.
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they identified a biomarker that included six types of cells for

predicting survival (Peng et al., 2021). However, the

abovementioned studies used the prognostic model instead of

the diagnostic model. To date, there is still no diagnostic model

for predicting “cold” and “hot” tumors among patients with LUSC.

Therefore, we developed this diagnostic tool for predicting the

individual status of TIME, which is a potential biomarker for

ICI therapy, thereby providing immunotherapeutic guidance.

Based on the abovementioned five CMGs, we established a

diagnostic nomogram based on the TCGA set for patients with

LUSC. Results revealed that high FAS, TNFRSF14, TNFRSF17,

TNFRSF1B, and TNFSF13B expressions are associated with a

high probability of “hot” tumor. Furthermore, the predictive

accuracy of the diagnostic nomogram was high in the TCGA

(ROC = 0.984) GSE73403 (ROC = 0.968), and GSE37745 (ROC =

0.822) datasets.

Despite the abovementioned advantages, the current study had

several limitations. First, all datasets were obtained from public

databases, and the power and credibility of our findings could be

strengthened by further performing validations in a real-world

cohort. Second, the underlying mechanism of these three CMGs

biomarkers was not explored, and a deep understanding of their

mechanism of action is important for identifying novel therapeutic

targets in the future. Third, the diagnostic accuracy and clinical value

of CMGs among patients with LUSCwas investigated usingmachine

learning algorithms and bioinformatic methods alone. Therefore, a

bias might be inevitable. Therefore, an experimental confirmation

using corresponding small-molecule inhibitors ormulticenter clinical

studies must be performed. Fourth, a diagnostic nomogram was

developed using TCGA data including samples from the

United States, its diagnostic performance was validated using two

other independent GEO datasets comprising cases from China and

Sweden. Therefore, the use of our model in patients with other

background characteristics or those from different regions should be

taken with caution due to the heterogeneity of patients with LUSC.

In conclusion, using machine learning algorithm and

bioinformatics, we comprehensively parsed the expression

patterns of CMGs and recognized two distinct TIME

subclasses among patients with LUSC. Five CMGs, including

FAS, TNFRSF14, TNFRSF17, TNFRSF1B, and TNFSF13B, were

found to be diagnostic markers. Then, a novel diagnostic

nomogram for predicting individual TIME status was

developed based on these CMGs. This nomogram had a good

predictive accuracy. Thus, it could be used to identify patients

who may benefit more from ICI therapy.

Data availability statement

Publicly available datasets were analyzed in this study. This

data can be found here: TCGA databases (https://tcga-data.nci.

nih.gov/tcga/) and the GEO databases (https://www.ncbi.nlm.

nih.gov/geo/).

Ethics statement

The studies involving human participants were reviewed and

approved by ethics committee of Sun Yat-sen University Cancer

Center. Written informed consent for participation was not

required for this study in accordance with the national

legislation and the institutional requirements.

Author contributions

Conception and design: YB and HL; Provision of study

materials or patients: FD, WW and WZ; Collection and

assembly of data: JW, ZZ, LZ, BR, and YZ; Data analysis and

interpretation: FD, WW and WZ; Manuscript writing and

editing: FD and WW; Manuscript revising: FD and WW;

Final approval of manuscript: All authors.

Funding

This work was supported by the Natural Science Foundation of

Guangdong Province of China (GrantNumbers. 2019A1515011601).

Acknowledgments

We thank Bullet Edits Limited for the linguistic editing and

proofreading of the manuscript.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found

online at: https://www.frontiersin.org/articles/10.3389/fgene.

2022.1078790/full#supplementary-material

Frontiers in Genetics frontiersin.org14

Duan et al. 10.3389/fgene.2022.1078790

https://tcga-data.nci.nih.gov/tcga/
https://tcga-data.nci.nih.gov/tcga/
https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
https://www.frontiersin.org/articles/10.3389/fgene.2022.1078790/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fgene.2022.1078790/full#supplementary-material
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.1078790


SUPPLEMENTARY FIGURE S1
Comparison of tumor purity among different LUSC patient clusters. The
comparison of tumor purity in TCGA (A); GSE73403 (B); and
GSE37745 datasets (C).

SUPPLEMENTARY FIGURE S2
Comparison of tumor purity between different immune environment
subclasses. Significant differences in tumor purity between the “cold”
and the “hot” tumor groups in TCGA (A); GSE73403 (B); and
GSE37745 datasets (C).

SUPPLEMENTARY FIGURE S3
The violin plot based on MCP-counter depicts infiltration disparities
among immune cell types between the “hot” tumor group (red) and the

“cold” tumor group (blue) in TCGA (A), GSE73403 (B), and
GSE37745 datasets (C).

SUPPLEMENTARY FIGURE S4
The heatmap showed the expression of the five CMGs between
“hot” and “cold” tumor in TCGA (A), GSE73403 (B), and
GSE37745 datasets (C).

SUPPLEMENTARY FIGURE S5
The receiver operating characteristic (ROC) curve for the diagnostic
efficacy verification of nomogram plus PD-L1 in TCGA (A),
GSE73403 (B), and GSE37745 datasets (C). The ROC curve for the
diagnostic efficacy verification of nomogram plus PD-L1 and TMB in
TCGA dataset (D).
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