481,465 research outputs found

    Supernova pencil beam survey

    Get PDF
    Type Ia supernovae (SNe Ia) can be calibrated to be good standard candles at cosmological distances. We propose a supernova pencil beam survey that could yield between dozens to hundreds of SNe Ia in redshift bins of 0.1 up to z=1.5z=1.5, which would compliment space based SN searches, and enable the proper consideration of the systematic uncertainties of SNe Ia as standard candles, in particular, luminosity evolution and gravitational lensing. We simulate SNe Ia luminosities by adding weak lensing noise (using empirical fitting formulae) and scatter in SN Ia absolute magnitudes to standard candles placed at random redshifts. We show that flux-averaging is powerful in reducing the combined noise due to gravitational lensing and scatter in SN Ia absolute magnitudes. The SN number count is not sensitive to matter distribution in the universe; it can be used to test models of cosmology or to measure the SN rate. The SN pencil beam survey can yield a wealth of data which should enable accurate determination of the cosmological parameters and the SN rate, and provide valuable information on the formation and evolution of galaxies. The SN pencil beam survey can be accomplished on a dedicated 4 meter telescope with a square degree field of view. This telescope can be used to conduct other important observational projects compatible with the SN pencil beam survey, such as QSOs, Kuiper belt objects, and in particular, weak lensing measurements of field galaxies, and the search for gamma-ray burst afterglows.Comment: Final version, to appear in ApJ, 531, #2 (March 10, 2000). 22 pages including 5 figures. Improved presentatio

    Detector measures power in 50 to 30,000 GHz radiation band

    Get PDF
    Broadband power detector assembly measures electromagnetic radiation in the 50 to 30,000 GHz band. The assembly includes a matched pair of detectors which incorporate thin-film radiation absorbers. The detector is effective with either coherent or incoherent radiation

    Spin Exchange Rates in Electron-Hydrogen Collisions

    Get PDF
    The spin temperature of neutral hydrogen, which determines the 21 cm optical depth and brightness temperature, is set by the competition between radiative and collisional processes. In the high-redshift intergalactic medium, the dominant collisions are typically those between hydrogen atoms. However, collisions with electrons couple much more efficiently to the spin state of hydrogen than do collisions with other hydrogen atoms and thus become important once the ionized fraction exceeds ~1%. Here we compute the rate at which electron-hydrogen collisions change the hydrogen spin. Previous calculations included only S-wave scattering and ignored resonances near the n=2 threshold. We provide accurate results, including all partial wave terms through the F-wave, for the de-excitation rate at temperatures T_K < 15,000 K; beyond that point, excitation to n>=2 hydrogen levels becomes significant. Accurate electron-hydrogen collision rates at higher temperatures are not necessary, because collisional excitation in this regime inevitably produces Lyman-alpha photons, which in turn dominate spin exchange when T_K > 6200 K even in the absence of radiative sources. Our rates differ from previous calculations by several percent over the temperature range of interest. We also consider some simple astrophysical examples where our spin de-excitation rates are useful.Comment: submitted to MNRAS, 9 pages, 5 figure

    Thermodynamics of de Sitter Black Holes: Thermal Cosmological Constant

    Full text link
    We study the thermodynamic properties associated with the black hole event horizon and the cosmological horizon for black hole solutions in asymptotically de Sitter spacetimes. We examine thermodynamics of these horizons on the basis of the conserved charges according to Teitelboim's method. In particular, we have succeeded in deriving the generalized Smarr formula among thermodynamical quantities in a simple and natural way. We then show that cosmological constant must decrease when one takes into account the quantum effect. These observations have been obtained if and only if cosmological constant plays the role of a thermodynamical state variable. We also touch upon the relation between inflation of our universe and a phase transition of black holes.Comment: Revtex4, 11page

    Late-time acceleration with steep exponential potentials

    Full text link
    In this letter, we study the cosmological dynamics of steeper potential than exponential. Our analysis shows that a simple extension of an exponential potential allows to capture late-time cosmic acceleration and retain the tracker behavior. We also perform statefinder and OmOm diagnostics to distinguish dark energy models among themselves and with Λ\LambdaCDM. In addition, to put the observational constraints on the model parameters, we modify the publicly available CosmoMC code and use an integrated data base of baryon acoustic oscillation, latest Type Ia supernova from Joint Light Curves sample and the local Hubble constant value measured by the Hubble Space Telescope.Comment: 9 pages, 5 figures, 2 table
    corecore