8,722 research outputs found
An occupancy problem involved in multiaccess communication systems
AbstractAn occupancy problem involved in multiaccess communication systems is studied. We are primarily interested in the prbability of the number of successful time slots after n consecutive time slots for contention with the initial number of users being k. Two different approaches are used to derive the required probability: one is based on the concept of multiple summations and the other uses the theory of Markov chain. It is shown that the latter approach is more computationally efficient than the former
Negative Interactions in Irreversible Self-Assembly
This paper explores the use of negative (i.e., repulsive) interaction the
abstract Tile Assembly Model defined by Winfree. Winfree postulated negative
interactions to be physically plausible in his Ph.D. thesis, and Reif, Sahu,
and Yin explored their power in the context of reversible attachment
operations. We explore the power of negative interactions with irreversible
attachments, and we achieve two main results. Our first result is an
impossibility theorem: after t steps of assembly, Omega(t) tiles will be
forever bound to an assembly, unable to detach. Thus negative glue strengths do
not afford unlimited power to reuse tiles. Our second result is a positive one:
we construct a set of tiles that can simulate a Turing machine with space bound
s and time bound t, while ensuring that no intermediate assembly grows larger
than O(s), rather than O(s * t) as required by the standard Turing machine
simulation with tiles
Development of novel electrolyte materials for a new generation of low-temperature SOFCs
Issued as final reportNissan Motor
Lagrange multiplier characterizations of robust best approximations under constraint data uncertainty
AbstractIn this paper we explain how to characterize the best approximation to any x in a Hilbert space X from the set C∩{x∈X:gi(x)≤0,i=1,2,…,m} in the face of data uncertainty in the convex constraints, gi(x)≤0,i=1,2,…,m, where C is a closed convex subset of X. Following the robust optimization approach, we establish Lagrange multiplier characterizations of the robust constrained best approximation that is immunized against data uncertainty. This is done by characterizing the best approximation to any x from the robust counterpart of the constraints where the constraints are satisfied for all possible uncertainties within the prescribed uncertainty sets. Unlike the traditional Lagrange multiplier characterizations without data uncertainty, for constrained best approximation problems in the face uncertainty, we show that the strong conical hull intersection property (strong CHIP) alone is not sufficient to guarantee the Lagrange multiplier characterizations. We present conditions which guarantee that the strong CHIP is necessary and sufficient for the multiplier characterization. We also establish that the strong CHIP is automatically satisfied for the cases of polyhedral constraints with polytope uncertainty, and linear constraints with interval uncertainty. As an application, we show how robust solutions of shape preserving interpolation problems under ellipsoidal and box uncertainty cases can be obtained in terms of Lagrange multipliers under strict robust feasibility conditions
New Properties and Applications of Polyvinylidene-Based Ferroelectric Polymer
There are different kinds of novel properties and applications of polyvinylidene difluoride (PVDF)-based ferroelectric polymer films. Several issues associated with the structure, properties, and applications of PVDF-based ferroelectric polymer films are discussed. The main achievements of the research include high electric tunability of relaxor ferroelectric Langmuir–Blodgett (LB) terpolymer films, the creep process of the domain switching in poly(vinylidene fluoride-trifluoroethylene) ferroelectric thin films, transition from relaxor to ferroelectric-like phase in poly(vinylidene fluoride-trifluoroethylene -chlorofluoroethylene) terpolymer ultrathin films, abnormal polarization switching of relaxor terpolymer films at low temperatures, huge electrocaloric effect in LB ferroelectric polymer thin films, self-polarization in ultrathin LB polymer films, enhanced dielectric and ferroelectric properties in artificial polymer multilayers, and transition of polarization switching from extrinsic to intrinsic in ultrathin PVDF homopolymer films
Surface reconstruction of wear in carpets by using a wavelet edge detector
Carpet manufacturers have wear labels assigned to their products by human experts who evaluate carpet samples subjected to accelerated wear in a test device. There is considerable industrial and academic interest in going from human to automated evaluation, which should be less cumbersome and more objective. In this paper, we present image analysis research on videos of carpet surfaces scanned with a 3D laser. The purpose is obtaining good depth Images for an automated system that should have a high percentage of correct assessments for a wide variety of carpets. The innovation is the use of a wavelet edge detector to obtain a more continuously defined surface shape. The evaluation is based on how well the algorithms allow a good linear ranking and a good discriminance of consecutive wear labels. The results show an improved linear ranking for most carpet types, for two carpet types the results are quite significant
Mechanism of Enhancement in Electromagnetic Properties of MgB2 by Nano SiC Doping
A comparative study of pure, SiC, and C doped MgB2 wires has revealed that the SiC doping allowed C substitution and MgB2 formation to take place simultaneously at low temperatures. C substitution enhances Hc2, while the defects, small grain size, and nanoinclusions induced by C incorporation and low-temperature processing are responsible for the improvement in Jc. The irreversibility field (Hirr) for the SiC doped sample reached the benchmarking value of 10 T at 20 K, exceeding that of NbTi at 4.2 K. This dual reaction model also enables us to predict desirable dopants for enhancing the performance properties of MgB2
Examining The Role of Information Technology in Cultivating Firms’ Dynamic Marketing Capabilities
Dynamic capabilities enable firms to reconfigure limited resources or relative strengths to respond to rapid changes in market conditions. This study considers the central role of IT in creating and enhancing dynamic capabilities by analyzing the essential determinants of dynamic marketing capabilities and proposing a model that includes market orientation, IT infrastructure capabilities, and use of IT to support CRM. Tests using a large-scale survey support the model and most of its hypotheses. The results reveal significant effects of a firm’s market orientation and use of IT to support CRM and the functionality of IT infrastructure capabilities on dynamic marketing capabilities
- …