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Abstract. Carpet manufacturers have wear labels assigned to their
products by human experts who evaluate carpet samples subjected to
accelerated wear in a test device. There is considerable industrial and
academic interest in going from human to automated evaluation, which
should be less cumbersome and more objective. In this paper, we present
image analysis research on videos of carpet surfaces scanned with a 3D
laser. The purpose is obtaining good depth images for an automated sys-
tem that should have a high percentage of correct assessments for a wide
variety of carpets. The innovation is the use of a wavelet edge detector
to obtain a more continuously defined surface shape. The evaluation is
based on how well the algorithms allow a good linear ranking and a good
discriminance of consecutive wear labels. The results show an improved
linear ranking for most carpet types, for two carpet types the results are
quite significant.

Keywords: Carpet wear, LBP technique, Kullback-Leibler, Image anal-
ysis, Automated labeling assessment

1 Introduction

One of the most important parameters for the classification of the quality of
floor coverings is the conservation of appearance after an accelerated wear pro-
cess. To assess their aspect preservation, textile floor coverings were initially
compared with previously rated reference samples. As the physical features of
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these reference samples may change over time, a normalization committee de-
cided to propose certified photographs by international committees instead. In
the assessment process, the carpets are first subjected to accelerated mechanical
wear to simulate traffic exposure. Consequently, a group of trained experts com-
pare the original carpet with the carpet subjected to an accelerated mechanical
wear. Experts evaluate the wear level from color appearance and 3D structure,
attributing values between 1 and 5 to each carpet. Value 1 corresponds to a total
loss of structure and value 5 is attributed to a carpet that did not undergo a
structure change. This visual evaluation method lacks in reproducibility and the
method requires at least three experts, which is not always possible, especially
within a small company. The human evaluation assessment is also somewhat
subjective and industry is very interested in converting these traditional stan-
dards to automated objective standards. However, no automated system exists
yet to enable the labeling process.

Research in automated rating has progressed, specifically on image analysis
for extracting texture features from digital color images. Approximations to the
human evaluation have been achieved using Fourier transform [1], second order
statistics [2], random markov fields [3] and neural networks [4]. However, prac-
tical applications were limited at that time by factors such as the amount of
incorrect assessments exceeding 5% and algorithms being considered not generic
enough for a broad variety of carpets.

Recently, some researchers have been exploring the use of depth information
capturing the three dimensional structures of the carpets also evaluated by the
experts. Initially, a scanner for 3D objects was used to capture the 3D shape of
the carpet surfaces [5]. However, with that scanner the depth data were captured
into nonstructured grids, with the number of acquired points highly dependent
on the colors of the object. To extract texture features from these data using im-
age analysis, the information of depth had to be structured first into 2D images.
This has two disadvantages, an additional computational cost and the possibil-
ity of distortion of the surface shape due to interpolation methods involved in
this process [6]. Although a classification over 95% was achieved, the extracted
features did not change accordingly with the wear labels as should be expected.
Nevertheless, research in automating the labeling process now attempts to find
a universal classification system for carpets using depth and/or intensity data.

To optimize the feature extraction process a methodology based on experi-
mental design has been proposed [7]. The methodology assumes that for a correct
description the features must not only change monotonically according to the
wear labels but also must be highly discriminate between consecutive wear labels.

This methodology has been tested extracting Local Binary Pattern statistics
on references from different standards [8,9], obtaining rank correlations over
0.9, linear correlations over 0.88 and a 89% of statistical distinction between
consecutive wear labels. Additionally, a novel 3D scanner based on structured
light for specifically scanning carpets has been developed [10]. 3D data, termed
range data, are obtained by video capturing with a camera the reflection of a
uniform laser line on the surface of the carpet. Then, the depth information is



calculated from the highest position of the brightest reflection on the columns
of each frame. This system offers better linear and linear-rank correlations be-
tween wear labels and texture features computed from depth data. Experiments
suggest that depth and color information are complementary to generalize the
description on several carpets [11]. However, discrimination is still better using
data from intensity images.

In this paper we present our proposed method to improve the surface repre-
sentation on depth images. The method increases the discriminance of texture
by extracting the depth from the 3D range data using edge detection based on
multiresolution analysis. Thus, the relevant edges can be detected and separated
from noise. This type of analysis offers excellent results for texture analysis and
classification [12-16] and will be shown that the proposed method achieves a
better linear ranking of wear labels than the previous method for all carpet
types. We compare the results of our proposed method to the method applied
in [10] as well as the optimal results from both methods to results using images
of intensity.

The paper is organized as follows. In Section 2 we describe the materials
used in this apporach. In Section 3 we describe the method that we propose to
improve the construction of depth images as well as the methodology employed
to compare the methods. In Section 4 we report the results of the comparison.
Finally, in Sections 5 findings are discussed and conclusions are drawn.

2 Materials

In this approach we use eight types of reference sets provided from the EN1471
standard. Each reference contains a collection of samples of a particular textile
floor covering priorly subjected to different revolutions on the Vettermann tester.
The samples have been collected from carpet types loop, cut/loop, woven cut
pile, fris and shaggy. Each reference includes eight labelled samples of transitional
degrees of wear. These sets do not include label 5 and the labels vary from 4.5
to 1, with steps of half point. Label 4.5 represents a minor change in appearance
and label 1 a several change.

We composed a database of videos using the scanner based on structured
light. For this, the samples were scanned one sample at a time. The sample was
first vacuum cleaned and held with elastic bands upon an inox-drum with a
diameter of 25 ¢m. On the surface of the sample a uniform line was projected.
The line was produced with a line laser generator model LDM-4-650-1-PF200-
ULG60. This type of lasers produce a bright, crisp laser line of uniform intensity
with a fan angle of 60°. It was fixed at 20 ¢m above the drum projecting on the
surface of the sample a high quality uniform line with a length of 20 ¢m and
with a thickness of 0.5 mm.

The reflection of the line was seen with a progressive 3CCD Sony camera
model DXC-9100P using a Sony macro lens model VCL-707BXM. The camera
was fixed at a distance of 30 ¢m from the line to the objective lens. Figure 1
shows the reflection of the uniform laser line on the surface of samples from



the same reference with different degrees of change in appearance. To cover the
surface of the sample with the line, the drum was moved using a motor model
Parvalux 400-753 with gear box. This allowed us to control the distance between
captured lines. The speed of the motor was controlled using an AC Inverter
Drive Speed Controller with model Parker SSD Drives 650. Thus, 50 seconds of
video have been recorded for each sample with 25 fps. The frames are spaced
0.24 mm on the surface, each frame with a resolution of 720 x 576 pixels.

As a result we have composed a database of 64 videos, capturing the 3D
structure of eight types of reference fatigued specimens. Each reference with
samples of eight wear labels. Figure 1 displays sections of frames showing the
change of appearance on the surface of reference samples.

4.5 4.0 3.5 3.0 2.5 2.0 1.5

Wear Labels

Fig. 1. Surface appearance change captured by the camera on carpet type loop.

3 Methods

To be able to use classic image analysis, the depth information given by the
reflection of the light must be stored into an image. For this, Orjuela et al. have
proposed in [10] and [11] to search in each column of the frame for the highest
position of the highest intensity value corresponding to the reflected light on the
surface. That position represents the depth and an array is constructed using
one depth value per column from the frame. Then, the image is built adding the
arrays when the drum is rotating. In the following, we will refer to this method
as the RefLight method.

From Figure 1 it can be observed that the reflected light forms discontinuous
segments with a high variation in width. We are however particularly interested
in obtaining fine lines representing small details that describe changes in surface
between wear labels. Using the RefLight method on this kind of images has two
disadvantages. The first one is that it is highly dependent on the intensity of
the reflected light; the second one is that the detected points are unconnected
between columns since they are independently calculated. Since this method does
not assure a good reconstruction with a continuous surface shape, we propose
to use an edge detection procedure instead.

For a better reconstruction of the surface shape, we propose to detect the
edge of the laser line frame by frame using a wavelet representation [17]. The



need for a multiresolution evaluation relies on the fact that edges such as those
describing the reflection of the light are optimally detected by using different
scales and classical edge detectors (like Canny) only use a single scale parameter
for the whole image [18]. Thus, the basic single scale edge detection has been
extended to an approach that combines information about the behaviour of the
edges across a set of different scales [19]. The number of scales is determined by
applying a Gaussian lowpass filter with increasing standard deviation, termed
o, from 1 to 5 until separate fibers can no longer be distinguished in the image
[20]. In our case the separated fibers are no longer perceptible beyond o = 3.
This is illustrated in Figure 2.

c=2 o=3 o=4 o=5

Original o=1

Fig. 2. Visual selection of the number of scale to evaluate.

The edges are detected in each sub—band by using a Canny second—order fil-
ter. Additionally, lower resolution sub-bands are merged by using a Sobel filter
in order to preserve the position of the edge in the image. This filter is used
because the edge is selected when the amplitude of the filter response increases
from the finer to the lower scale sub-bands and eliminated when the amplitude
decreases from finer to coarser scales [17]. In a more formal way, we compute
the Lipschitz exponents for all positions in the image. This Lipschitz exponent
expresses the local regularity of an image at a certain location. The Lipschitz
exponent is small where only fine texture or noise are present and large where
smoother features or continued edges are present. Recent works that use the
Lipschitz exponent in multiresolution edge detection can be found in [21] and
[22]. Using the Lipschitz exponent implicitly separates the noise from the edges.
In the following, we will refer to this method for detecting edges as the Edge-
Wav method. Comparative methods can be found in [20, 23], where merging is
stated with an additional training phase in order to select the edges. For this
application, only the moduli of edge pixel coefficients are required.

For the methods considered in this paper, depth images are again constructed
by adding arrays when the drum is rotating, as it is defined in [10] and [11].
Thus, in the EdgeWav method, the highest position of the edges instead of the
highest intensity value is searched in each column of the frame. This improves
the representation of the depth of the surface by using connected points between
adjacent columns. Figure 3 shows cut out examples of the change in appearance
of the surface captured with both methods.
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Fig. 3. Comparison of the reconstruction of the surface on wear labels of carpet type
shaggy.

We want to compare the performance of both methods EdgeWav and Re-
fLight in discriminating between consecutive wear labels and in correctly rank-
ing them. For this, the texture transitions due to wear are first numerically
represented by extracting texture features from the images. Then, we use two
measures that quantify characteristics from the description of both methods. Fi-
nally, we evaluate which method offers the closest description of the wear label
to the visual analysis by comparing both the measures.

To extract texture features, we compute a symmetrized adaptation of the
Kullback-Leibler (SKL) [24] divergence on the distribution of Local Binary Pat-
terns (LBP) [7] from the images. We use the Rotational, Mirrored and Comple-
mented invariance extension of the LBP technique (LBPRMC) [7]. This tech-
nique has been tested on both intensity and depth images, revealing good perfor-
mance for multiple types of carpets [7, 11]. To characterize the texture, relation-
ships between points on a circle around a central pixel are evaluated. Equally
spaced points are considered on the circle and a corresponding pixel value in each
point is interpolated from the four pixels closest to the point. Each point gets a
code bit 0 or 1 assigned depending on whether it has a higher or lower gray value
than the central pixel. These bits are read out clock wise and placed in a di-
adic code word named pattern. Mirror and complement versions of patterns are
grouped using a look up table. This is because a carpet reflected in a mirror or
with the colors inverted would be assigned the same rating by human assessors.
The distribution of the patterns corresponding to wear labels are represented
with histograms. In human visual inspection samples with changes in appear-
ance are compared to samples of original appearance. However, there are not
samples from original appearance in the database. We estimate the LBPRMC
histograms corresponding to original appearance by using the pattern distribu-
tions of the respective changes in appearance, with wear labels from 1.0 to 4.5.
Thus, the bin values for the histogram corresponding to label 5.0 are estimated
using a linear regression model since the frequency of a pattern is expected to
change monotonically from labels 1.0 to 5.0 [7]. We quantify the difference in
texture between the original appearance and the changes by comparing the cor-
responding LBPRMC histograms. We compute the symmetric Kullback-Leibler
difference, termed «, between two histograms as follows:
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where hi(i) and ho(i) are the two histograms, which must be normalized
first, 4 is the bin index, h, (i) = h1(i) + ha(4) and N is the total number of bins.

For each image in the database, we composed a set of 32 image variations,
consisting in combinations of complements, rotations of 0, 90, 180, 270 degrees
and mirrored up-down and left-right. Some of these x values from the same
worn sample can be significantly larger or smaller than the others because of the
presence of factors such as flecks or speckles that could not be removed by the
vacuum cleaning. These outliers are detected using the Mahalanobis distance
and then replaced with the associated median to allow statistical comparisons
with an equal number of x values per worn sample.

To be consistent with the visual analysis, the x values are expected to change
monotonically with the wear labels as well as to be clearly distinguished between
consecutive wear labels [7]. To compare the WavEdge to the Reflight Method,
we quantify both characteristics from the description of both methods.

The first characteristic is satisfied if the relation between s values and the
wear labels is at least linear-ranked. To check this, we compute the Spearman
linear-rank correlation between the wear labels and the mean values of the as-
sociated k values. The Spearman rank correlation assign a significance of corre-
spondence between -1 to 1, with 1 indicating a perfect rank correlation.

The second characteristic can be evaluated by checking the number of Con-
secutive Wear labels that can be Statistically Discriminated, termed CWSD [7].
This number can be quantified by counting how many times the difference be-
tween consecutive means is larger than the threshold for a statistic significance.
The statistic significance is computed based on the Tukey test which allows
pairwise comparisons. For this, an equal number of x values per wear label is
required.

Most of the changes due to wear appear in the tips of the pile yarns tufts.
As their size depends of the type of carpet, a multiresolution analysis is required
[7]. This can be achieved by changing the number of circular neighbors and
their distance from the center pixel [25]. However, we prefer then to keep these
parameters fixed and to resize the images instead. To resize, we use bilinear
interpolation, analysing pictures on scale factors from 0.6 to 1 with intervals of
0.1. We present results only in this range because experiments show that the
optimal resolution is found to always lie in it.

The linear rank correlation and CWSD are called the response variables and
are computed for each one of the combinations of the elements shown in Table 1.

We are interested in evaluate whether the EdgeWav method offers a more
monotonic and higher discriminant representation of the x values related to
wear labels than the RefLight method. For this, we independently evaluate the
response variables using ANalysis Of VAriance tests (ANOVA) [26]. We test for
each response variable the null hypothesis ‘k values related to wear labels offer
the same representation for both methods’. ANOVA results are probabilities,



Table 1. Elements evaluated in this experiment.

Method |[ Scale Reference
Type Factor Type
RefLight 0.6 Shaggyl
EdgeWav|| 0.7 Cut/loop
0.8 Shaggy2
0.9 ||High/Low loop
1.0 Frisé
Cut
Loop
Cut Design

termed p-values, where a p-value less than a given « rejects the null hypothesis,
meaning that there is a significant difference in the response variables of both
methods with 100(1 — «)% of confidence.

For valid p-values, the methods must be independent of scale factors and
carpet types. These dependences are identified also by ANOVA evaluating the
null hypothesis ‘there are no dependences between combinations of methods in
Table I’, with p-values, where a p-value less than a given « rejects the null hy-
pothesis, meaning that there are dependences between the associated elements.
In case of dependences, the group is subdivided performing analysis in each sub-
group that does not reveal dependences among methods and scale factors and /or
carpet types. This assures the validity of the p-values.

4 Results

The ANOVA results show that using the EdgeWav method to construct depth
images improves significantly the discriminance between consecutive wear labels
as well as the linear rank between x values and wear labels. The results also
show that the method works well for seven of the eight carpet types evaluated.

To obtain these results, we tested for significant differences in the response
variables computed from images constructed with both the RefLight and the
EdgeWav method. Therefore, we first checked for dependencies between the type
of construction method and the type of carpets. During this analysis, the scale
factors were not evaluated since there was no evidence that scale factors are
dependent on either type of carpet or type of method. Afterwards, we searched
in each type of carpet for the best scale factor using only images constructed
with the EdgeWav method. In the following, we will describe the ANOVA results
in detail.

— Evaluation of Linear Rank Correlation (LRC). The ANOVA test
shows dependences between the type of methods and the type of carpets
(p-value < 0.01). However, there is no evidence of dependences between
scale factors and the other two elements (p-value = 0.894 for dependences
with methods and p-value = 0.252 for dependences with type of carpets ).
There is also no evidence at this point of significant differences between scale
factors (p-value = 0.617). From this, we separated the type of carpets in the
following three groups:



1. Carpets with high significant differences in LRC. This group is composed
of carpets in which the EdgeWav method improves over 0.1 the linear
rank correlation. Carpet type shaggyl and cut/loop are in this group.
There is no evidence in this group of dependences between carpet types
and methods (p-value = 0.24 > 0.5) and the LRC values are identified
to be significantly different (p-value > 0.01).

2. Carpets with low significant differences in LRC. This group is composed
of carpets in which the EdgeWav method improves less than 0.1 the
linear rank correlation. There is no evidence in this group of dependences
between carpet types and methods (p-value = 0.067 > 0.5) and the LRC
values are identified to be significantly different (p-value > 0.01). This
group contains carpet types shaggy?2, high/low loop and frisé.

3. Carpets with no significant differences. This group is composed of car-
pets in which the EdgeWav method does not improve the linear rank
correlation. There is no evidence in this group of dependences between
carpet types and methods (p-value = 0.89 > 0.5). There is neither ev-
idence in this group of significant differences in LRC values (p-value =
0.89 > 0.5). This group is composed of carpet types loop and cut design

0.02 0.01 0.01 0.05
— —— -
RefLight . .
0.50 0.83 0.77 374
0.02 0.01 0.01 0.05
EdgeWav . . .
0.86 0.90 0.78 420
High Low No
Difference Difference Difference
[ —
LRC Results CWSD Results

Fig. 4. Comparison of linear rank correlations between the RefLight and the EdgeWav
methods.

— Evaluation of the number of Consecutive Wear labels that can
be Statistically Discriminated (CWSD). The ANOVA results shows
no evidence of dependences between carpet types and methods (p-value =
0.091 > 0.5). CWSD values are identified to be significantly different (p-value
> 0.01) for all the eight types of carpets.

Figure 4 summarize the ANOVA results. Mean values, at the bottom of the
boxes, and standard deviations, represented with <+ at the top of the boxes,
are shown.

— Selecting for each type of carpet the optimal scale factor. As a fi-
nal step we choose the scale factor with the best combination of response
variables. Thus, the wear labels of the eight types of carpets are optimally



represented with the combination presented in Table 2. The table lists the
quantified characteristics, including linear correlations values for comparison
purposes with other approaches. Results obtained in [11] are also displayed
to state the advantages of the EdgeWav method over the RefLight method
as well as to compare the wear label description from depth images con-
structed using the EdgeWav method to the wear label description obtained
using intensity images. The values corresponding to the EdgeWav method
proposed in this approach are highlighted in italics. Additionally, for cases
where EdgeWav performs better than intensity images, the values have been
highlighted in bold.

Table 2. Optimal representation chosen for the eight types of carpets. LRC specifies
how well the x values are ranked according to the wear labels, CWSD determinates the
number of k related to consecutive wear labels that can be statistically discriminated
and LC is the linear correlation between  values and wear labels.

Carpet Image | Scale [LRC|CWSD| LC
Type Type |Factor
EdgeWav| 0.7 [0.97| 5.00 |0.93
Shaggyl RefLight | 0.7 ]0.93| 4.00 |0.92
Intensity | 0.7 ]0.93| 4.60 |0.75
EdgeWav| 0.6 |0.96| 5.00 |0.96
Cut/loop RefLight | 0.7 [0.53| 4.00 |0.48
Intensity | 0.9 |0.49| 5.20 |0.49
EdgeWav| 0.9 [0.87| 4.40 |0.89
Shaggy?2 RefLight | 0.9 |0.77| 4.00 |0.80
Intensity | 1.0 |0.92| 5.60 |0.87
EdgeWav| 0.6 [0.95| 4.20 |0.96
High/Low loop| RefLight | 0.6 [0.88| 4.00 [0.93
Intensity | 0.9 [0.99| 6.40 |0.97
EdgeWav| 0.9 [0.99| 6.2 |0.99
Frisé RefLight | 0.9 [0.97| 5.40 |0.97
Intensity | 1.0 |0.89| 5.20 |0.82
EdgeWav| 0.8 [0.99| 5.00 |0.91
Cut RefLight | 0.9 [0.95| 3.60 |0.93
Intensity | 1.0 [0.99| 6.00 |0.96
EdgeWav| 1.0 [1.00| 6.60 |0.91
Loop RefLight | 0.8 [1.00| 6.60 |0.94
Intensity | 0.9 |0.98| 6.20 |0.97
EdgeWav| 0.9 [0.70| 4.00 |0.68
Cut Design | RefLight | 1.0 |0.65| 3.80 [0.73
Intensity | 0.9 |0.87| 4.20 |0.81

5 Discussions and conclusions

In this paper a comparison between two methods for reconstructing the surface
of carpets from depth images has been presented. The novel use of a wavelet edge
detection algorithm has been compared to a previously used algorithm that only
looked at the highest position of the brightest reflection in the images. The
images were taken from samples of 8 types of carpets provided from the EN1471
standard. The texture features were extracted comparing the distribution of LBP



patterns between images of original and change in appearance of carpets. Then
two characteristics were used to evaluate the algorithms against each other, these
characteristics are first how well the relation of the k values (obtained from the
Symmetric Kullback-Leibler difference) and the wear labels is linear ranked and
second how well consecutive wear labels can be statistically discriminated using
their k values. The results of this evaluation show that the wavelet edge detector
significantly improves the linear ranking compared to the original algorithm
for six of the eight carpet types. For two carpet the method tend to perform
better but without statistical evidence of significant improvement. The statistical
discriminance between consecutive wear labels improves for all types of carpets.
As a last step, the optimum (giving best response variables) scale factor of the
images was researched and both characteristics and linear correlation coefficient
were given. These measures permit comparison of results from images obtained
with our method to results using depth images obtained with the original method
as well as intensity intensity images, both evaluated in [11]. Wear labels in four
carpet types are best represented with depth images and the other four with
intensity images. This confirms that the texture features from both types of
images are complementary for representing the wear label. Particularly, wear
labels in carpet type cut/lop could be now represented, which was not possible
in the previous approach. We have shown that using the wavelet edge detector,
texture features with a more monotonical description with wear labels can be
obtained for depth images. These types of features combined with features from
intensity images can be used for developing an automated carpet assessment
system dealing with multiples carpets.
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