6,001 research outputs found

    InSAR processing for the recognition of landslides

    No full text
    International audienceSynthetic Aperture Radar Interferometry (InSAR) is an established method for the detection and monitoring of earth surface processes. This approach has been most successful where the observed area fulfills specific requirements, such as sufficient backscattering, flat slope gradients or very slow changes of vegetation. We investigated the capability of two different InSAR techniques and achieved good results for the recognition of landslides in China and Greece that compared well with geodetic derived movement rates. This demonstrates the strong potential of SAR Interferometry for the detection of landslides and earth surface movements

    Extracting high fidelity quantum computer hardware from random systems

    Full text link
    An overview of current status and prospects of the development of quantum computer hardware based on inorganic crystals doped with rare-earth ions is presented. Major parts of the experimental work in this area has been done in two places, Canberra, Australia and Lund, Sweden, and the present description follows more closely the Lund work. Techniques will be described that include optimal filtering of the initially inhomogeneously broadened profile down to well separated and narrow ensembles, as well as the use of advanced pulse-shaping in order to achieve robust arbitrary single-qubit operations with fidelities above 90%, as characterized by quantum state tomography. It is expected that full scalability of these systems will require the ability to determine the state of single rare-earth ions. It has been proposed that this can be done using special readout ions doped into the crystal and an update is given on the work to find and characterize such ions. Finally, a few aspects on the possibilities for remote entanglement of ions in separate rare-earth-ion-doped crystals are considered.Comment: 19 pages, 9 figures. Written for The Proceedings of the Nobelsymposium on qubits for future quantum computers, Gothenburg, May-0

    Decoherence assisting a measurement-driven quantum evolution process

    Full text link
    We study the problem of driving an unknown initial mixed quantum state onto a known pure state without using unitary transformations. This can be achieved, in an efficient manner, with the help of sequential measurements on at least two unbiased bases. However here we found that, when the system is affected by a decoherence mechanism, only one observable is required in order to achieve the same goal. In this way the decoherence can assist the process. We show that, depending on the sort of decoherence, the process can converge faster or slower than the method implemented by means of two complementary observables.Comment: Four pages, three figures included ([email protected]

    Quantum computation with trapped ions in an optical cavity

    Full text link
    Two-qubit logical gates are proposed on the basis of two atoms trapped in a cavity setup. Losses in the interaction by spontaneous transitions are efficiently suppressed by employing adiabatic transitions and the Zeno effect. Dynamical and geometrical conditional phase gates are suggested. This method provides fidelity and a success rate of its gates very close to unity. Hence, it is suitable for performing quantum computation.Comment: 4 pages, 5 figures, REVTEX, second part modified, typos correcte

    A new, temporarily confined population in the polar cap during the August 27, 1996 geomagnetic field distortion period

    Get PDF
    On August 27, 1996, a two-hour energetic heavy ion event (∼1 MeV) was detected at 8:25 UT at apogee (∼9 Re and an invariant latitude of ∼80°), by the Charge and Mass Magnetospheric Ion Composition Experiment onboard POLAR. The event, with a maximum spin averaged peak flux of ∼150 particles/(cm²-sr-s-MeV), showed three local peaks corresponding to three localized regions; the ion pitch angle distributions in the three regions were different from an isotropic distribution and different from each other. No comparable flux was observed by the WIND spacecraft. The appearance of lower energy He++ and O \u3e +2 during the event period indicates a solar source for these particles. From region 1 to 2 to 3, the helium energy spectra softened. A distorted magnetic field with three local minima corresponding to the three He peak fluxes was also observed by POLAR. A possible explanation is that the energetic He ions were energized from lower energy helium by a local acceleration mechanism that preferred smaller rigidity ions in the high altitude polar cusp region

    Deterministic cavity quantum electrodynamics with trapped ions

    Get PDF
    We have employed radio-frequency trapping to localize a single 40Ca+-ion in a high-finesse optical cavity. By means of laser Doppler cooling, the position spread of the ion's wavefunction along the cavity axis was reduced to 42 nm, a fraction of the resonance wavelength of ionized calcium (λ = 397 nm). By controlling the position of the ion in the optical field, continuous and completely deterministic coupling of ion and field was realized. The precise three-dimensional location of the ion in the cavity was measured by observing the fluorescent light emitted upon excitation in the cavity field. The single-ion system is ideally suited to implement cavity quantum electrodynamics under cw conditions. To this end we operate the cavity on the D3/2–P1/2 transition of 40Ca+ (λ = 866 nm). Applications include the controlled generation of single-photon pulses with high efficiency and two-ion quantum gates

    High fidelity transport of trapped-ion qubits through an X-junction trap array

    Full text link
    We report reliable transport of 9Be+ ions through a 2-D trap array that includes a separate loading/reservoir zone and an "X-junction". During transport the ion's kinetic energy in its local well increases by only a few motional quanta and internal-state coherences are preserved. We also examine two sources of energy gain during transport: a particular radio-frequency (RF) noise heating mechanism and digital sampling noise. Such studies are important to achieve scaling in a trapped-ion quantum information processor.Comment: 4 pages, 3 figures Updated to reduce manuscript to four pages. Some non-essential information was removed, including some waveform information and more detailed information on the tra
    • …
    corecore