2,528 research outputs found

    Biomass-derived activated carbon with simultaneously enhanced CO2 uptake for both pre and post combustion capture applications

    Get PDF
    We report on the synthesis and CO2 uptake capabilities of a series of activated carbons derived from biomass raw materials, Jujun grass and Camellia japonica. The carbons were prepared via hydrothermal carbonization of the raw materials, which yielded hydrochars that were activated with KOH at temperature between 600 and 800 °C. Carbons activated at KOH/hydrochar ratio of 2 have moderate to high surface area (1050 – 2750 m2 g-1), are highly microporous (95% of surface area arises from micropores, and 84% of pore volume from micropores of size between 5 and 7 Å), and exhibit excellent CO2 uptake capacity at 25 oC of up to 1.5 mmol g-1 at 0.15 bar and 5.0 mmol g-1 at 1 bar, which is amongst the highest reported so far for biomass-derived carbons. On the other hand, activation at KOH/hydrochar ratio of 4 generates carbons with surface area and pore volume of up to 3,537 m2 g-1 and 1.85 cm3 g-1, and which, depending on level of activation, simultaneously exhibit high CO2 uptake at both 1 bar (4.1 mmol g-1) and 20 bar (21.1 mmol g-1), i.e. under conditions that mimic, respectively, post combustion and pre combustion CO2 capture from flue gas streams. The present carbons are the first examples of biomass derived porous materials with such allround CO2 uptake performance, which arises due to the pore size distribution of the carbons being shifted towards small micropores even for samples with very high surface area. Thus the carbons satisfy the requirements for both low pressure (presence of small micropores) and high pressure (high surface area) CO2 uptake

    Bridging the performance gap between electric double-layer capacitors and batteries with high-energy/high-power carbon nanotube-based electrodes

    Get PDF
    Electric double-layer capacitors (EDLCs) store electrical energy at the interface between charged electrodes and electrolytes and are higher-power devices than batteries. However, the amount of energy stored in EDLCs cannot compete with that in batteries. In this contribution, we describe the development of new EDLCs that can store about as much energy as lead-acid and nickel metal hydride (NiMH) batteries but operate at much higher power densities than achievable using batteries. The electrode materials are derived from carbon nanotubes (CNTs) synthesised from CCl4 and ferrocene at 180 °C, which is drastically lower than the temperatures usually used to synthesise CNTs. By chemically activating the CNTs using KOH, Bruneuer-Emmett-Teller (BET) surface areas reach ~3000 m2/g, which is orders of magnitude higher than those typical of CNTs, and exceeds even that of pristine graphene. Gas sorption analysis shows that the samples activated at 900 °C contain a mix of micropores and small mesopores, while the samples activated at lower temperatures are predominantly microporous. In EDLCs containing aqueous H2SO4 as the electrolyte, the mesoporous carbons exhibit mass-specific capacitances up to 172 F/g, while in the presence of the ionic liquids 1-ethyl-3-methylimidazolium tetrafluoroborate, [EMIM][BF4], and 1-butyl-3-methylimidazolium tetrafluoroborate, [BMIM][BF4], capacitances up to 150 F/g are measured. Due to the wide potential window of the ionic liquid electrolytes and the unique morphology of the electrode materials, 3-V devices with volume-specific energy densities of the order of 6 Wh/L and mass specific energy densities up to about 15 Wh/kg can be fabricated. The energy stored can be delivered at power densities >1 kW/kg meaning that the performance of these devices bridges the performance gap between those of EDLCs and batteries. The use of this novel electrode material not only allows the fabrication of high- energy/high-power energy storage systems, the methods used to fabricate the electrode materials are inexpensive and can readily be scaled to industrial levels

    Incarnating and articulating the female other. Interview with Helena Walsh

    Get PDF
    You are Irish you say lightly, and allocated to you are the tendencies to be wild, wanton, drunk, superstitious, unreliable, backward, toadying and prone to fits, whereas you know that in fact a whole entourage of ghosts resides in you, ghosts with whom the inner rapport is as frequent, as perplexing, as defiant as with any of the living.Edna O’Brien, Mother Ireland, 1976. I need to bear witness to an uncertain event. I feel it r..

    A Radical Feminist Diaspora: Speaking of IMELDA, reproductive justice and Ireland

    Get PDF
    Speaking of I.M.E.L.D.A. discuss how they counter restrictive Irish legislation on reproduction from their location in London. Analysing the use of performative resistance, they firstly situate their work within the legacies of 1980s London-Irish feminist activism to reflect on the radical aspects of diasporic communities. I.M.L.E.D.A. then consider the ‘performative activism of “loose” women who both violate and affirm social constructions and projections of “normative” femininity’ (Gale, 2015: 314). Subsequently they argue that I.M.E.L.D.A. actions are a messy alliance between art and politics when a loosely framed DIY aesthetics spills out from artistic representation into crude political propositions that demand a response

    Age-Related Sexual Dimorphism in Temporal Discrimination and in Adult-Onset Dystonia Suggests GABAergic Mechanisms

    Get PDF
    Background: Adult-onset isolated focal dystonia (AOIFD) presenting in early adult life is more frequent in men, whereas in middle age it is female predominant. Temporal discrimination, an endophenotype of adult-onset idiopathic isolated focal dystonia, shows evidence of sexual dimorphism in healthy participants. Objectives: We assessed the distinctive features of age-related sexual dimorphism of (i) sex ratios in dystonia phenotypes and (ii) sexual dimorphism in temporal discrimination in unaffected relatives of cervical dystonia patients. Methods: We performed (i) a meta-regression analysis of the proportion of men in published cohorts of phenotypes of adult-onset dystonia in relation to their mean age of onset and (ii) an analysis of temporal discrimination thresholds in 220 unaffected first-degree relatives (125 women) of cervical dystonia patients. Results: In 53 studies of dystonia phenotypes, the proportion of men showed a highly significant negative association with mean age of onset (p \u3c 0.0001, pseudo-R2 = 59.6%), with increasing female predominance from 40 years of age. Age of onset and phenotype together explained 92.8% of the variance in proportion of men. Temporal discrimination in relatives under the age of 35 years is faster in women than men but the age-related rate of deterioration in women is twice that of men; after 45 years of age, men have faster temporal discrimination than women. Conclusion: Temporal discrimination in unaffected relatives of cervical dystonia patients and sex ratios in adult-onset dystonia phenotypes show similar patterns of age-related sexual dimorphism. Such age-related sexual dimorphism in temporal discrimination and adult-onset focal dystonia may reflect common underlying mechanisms. Cerebral GABA levels have been reported to show similar age-related sexual dimorphism in healthy participants and may be the mechanism underlying the observed age-related sexual dimorphism in temporal discrimination and the sex ratios in AOIFD

    How have Supplemental Instruction-Peer Assisted Study Sessions (SI-PASS) programmes adapted during the COVID-19 pandemic? Case Studies from four Higher Education Institutes in Ireland, Norway, the UK and Sweden.

    Get PDF
    In this paper we look at the adaption of SI-PASS programmes during the COVID-19 pandemic drawing from four Higher Education Institutions (HEIs) as case studies: The National University of Ireland (NUI) Galway in Ireland, Nord University in Norway, Lund University in Sweden and the University of Manchester in the UK. The paper also focuses on the role of SI-PASS in student engagement in an extraordinary time. Attention is given to the numerous challenges that the SI-PASS teams have faced. For instance, how to engage students in an online environment or in a face-to-face setting with social distancing, training student leaders to hold online sessions, support of leaders, and enhancing the student participants’ learning experience. Attention is also given to the potential benefits of online SI-PASS and lessons learned that can be incorporated in post-pandemic SI-PASS programmes.publishedVersio

    Investigation of the molecular profile of basal cell carcinoma using whole genome microarrays

    Get PDF
    BACKGROUND: Skin cancer accounts for 1/3 of all newly diagnosed cancer. Although seldom fatal, basal cell carcinoma (BCC) is associated with severe disfigurement and morbidity. BCC has a unique interest for researchers, as although it is often locally invasive, it rarely metastasises. This paper, reporting the first whole genome expression microarray analysis of skin cancer, aimed to investigate the molecular profile of BCC in comparison to non-cancerous skin biopsies. RNA from BCC and normal skin specimens was analysed using Affymetrix whole genome microarrays. A Welch t-test was applied to data normalised using dCHIP to identify significant differentially-expressed genes between BCC and normal specimens. Principal component analysis and support vector machine analysis were performed on resulting genelists, Genmapp was used to identify pathways affected, and GOstat aided identification of areas of gene ontology more highly represented on these lists than would be expected by chance. RESULTS: Following normalisation, specimens clustered into groups of BCC specimens and of normal skin specimens. Of the 54,675 gene transcripts/variants analysed, 3,921 were differentially expressed between BCC and normal skin specimens. Of these, 2,108 were significantly up-regulated and 1,813 were statistically significantly down-regulated in BCCs. CONCLUSION: Functional gene sets differentially expressed include those involved in transcription, proliferation, cell motility, apoptosis and metabolism. As expected, members of the Wnt and hedgehog pathways were found to be significantly different between BCC and normal specimens, as were many previously undescribed changes in gene expression between normal and BCC specimens, including basonuclin2 and mrp9. Quantitative-PCR analysis confirmed our microarray results, identifying novel potential biomarkers for BCC
    corecore