63,556 research outputs found

    What fraction of the density fluctuations in the Perseus cluster core is due to gas sloshing rather than AGN feedback?

    Full text link
    Deep Chandra observations of the core of the Perseus cluster show a plethora of complex structure. It has been found that when the observed density fluctuations in the intracluster medium are converted into constraints on AGN induced turbulence, the resulting turbulent heating rates are sufficient to balance cooling locally throughout the central 220kpc. However while the signatures of AGN feedback (inflated bubbles) dominate the central 60kpc in X-ray images, beyond this radius the intracluster medium is increasingly shaped by the effects of gas sloshing, which can also produce subtle variations in X-ray surface brightness. We use mock Chandra observations of gas sloshing simulations to investigate what fraction of the observed density fluctuations in the core of the Perseus galaxy cluster may originate from sloshing rather than AGN induced feedback. Outside 60kpc, we find that the observed level of the density fluctuations is broadly consistent with being produced by sloshing alone. If this is the case, AGN-generated turbulence is likely to be insufficient in combating cooling outside 60kpc.Comment: 9 pages, 5 figures, accepted for publication in MNRA

    Large scale gas sloshing out to half the virial radius in the strongest cool core REXCESS galaxy cluster, RXJ2014.8-2430

    Full text link
    We search the cool core galaxy clusters in the REXCESS sample for evidence of large scale gas sloshing, and find clear evidence for sloshing in RXJ2014.8-2430, the strongest cool core cluster in the REXCESS cluster sample. The residuals of the surface brightness distribution from the azimuthal average for RXJ2014 show a prominent swirling excess feature extending out to an abrupt surface brightness discontinuity at 800 kpc from the cluster core (half the virial radius) to the south, which the XMM-Newton observations confirm to be cold, low entropy gas. The gas temperature is significantly higher outside this southern surface brightness discontinuity, indicating that this is a cold front 800 kpc from the cluster core. Chandra observations of the central 200 kpc show two clear younger cold fronts on opposite sides of the cluster. The scenario appears qualitatively consistent with simulations of gas sloshing due to minor mergers which raise cold, low entropy gas from the core to higher radius, resulting in a swirling distribution of opposing cold fronts at increasing radii. However the scale of the observed sloshing is much larger than that which has been simulated at present, and is similar to the large scale sloshing recently observed in the Perseus cluster and Abell 2142.Comment: 5 pages, 5 figures. Accepted for publication in MNRA

    An XMM-Newton view of the merging activity in the Centaurus cluster

    Full text link
    We report the results of XMM-Newton observations of the regions around the core of the Centaurus cluster where evidence for merging activity between the subgroup Cen 45 and the main Centaurus cluster has previously been observed using ASCA and ROSAT data. We confirm the ASCA findings of a temperature excess surrounding Cen 45. We find that this temperature excess can be explained using simple shock heating given the large line of sight velocity difference between Cen 45 and the surrounding main Centaurus cluster. We find that there is a statistically significant excess in metallicity around Cen 45, showing that Cen 45 has managed to retain its gas as it has interacted with the main Centaurus cluster. There is a pressure excess to the east in the direction of the merger, and there is also an entropy excess around the central galaxy of Cen 45. The metallicity between 50-100 kpc to the north of NGC 4696 is higher than to the south, which may be the result of the asymmetric distribution of metals due to previous sloshing of the core, or which may be associated with the filamentary structure we detect between NGC 4696 and NGC 4696B.Comment: 11 pages, 12 figures. Accepted for publication in MNRA

    Constraining gas motions in the Centaurus cluster using X-ray surface brightness fluctuations and metal diffusion

    Full text link
    We compare two different methods of constraining the characteristic velocity and spatial scales of gas motions in the X-ray bright, nearby Centaurus cluster, using new deep (760ks) Chandra observations. The power spectrum of excess surface brightness fluctuations in the 0.5-6.0 keV band in a sector to the west is measured and compared to theoretical expectations for Kolmogorov index fluctuations. The observed power spectrum is flatter than these expectations, and the surface brightness fluctuations are around the 8 percent level on length scales of 2 kpc. We convert the 2D power spectrum of fluctuations into a 3D power spectrum using the method of Churazov et al., and then convert this into constraints on the one-component velocity of the gas motions as a function of their length scale. We find one-component velocities in the range 100-150 km/s on spatial scales of 4-10 kpc. An independent constraint on the characteristic velocity and length scales of the gas motions is then found by considering the diffusion coefficient needed to explain the distribution of metals in the Centaurus cluster, combined with the need to balance the rate of gas cooling with the rate of heat dissipated by the gas motions. We find that these two methods of constraining the velocity and length scales of the gas motions are in good agreement.Comment: 8 pages, 7 figures. Accepted for publication in MNRA

    Contribution to the extragalactic X-ray background from clusters of galaxies

    Get PDF
    The contribution to the extragalactic background from clusters of galaxies in the 2-6 keV band was computed. Two different cluster luminosity functions and two different models for cluster evolution were considered and a cluster X-ray luminosity-temperature relationship of the type L alpha T sup alpha +1/2 was assumed. It is found that the overall contribution of clusters to the background is approximately 10% of the total observed X-ray extragalactic approximately 150 eV is superimposed on the observed background. This result is quite insensitive to the different set of assumptions made in the calculation
    corecore