56,167 research outputs found
Asymptotic integration algorithms for nonhomogeneous, nonlinear, first order, ordinary differential equations
New methods for integrating systems of stiff, nonlinear, first order, ordinary differential equations are developed by casting the differential equations into integral form. Nonlinear recursive relations are obtained that allow the solution to a system of equations at time t plus delta t to be obtained in terms of the solution at time t in explicit and implicit forms. Examples of accuracy obtained with the new technique are given by considering systems of nonlinear, first order equations which arise in the study of unified models of viscoplastic behaviors, the spread of the AIDS virus, and predator-prey populations. In general, the new implicit algorithm is unconditionally stable, and has a Jacobian of smaller dimension than that which is acquired by current implicit methods, such as the Euler backward difference algorithm; yet, it gives superior accuracy. The asymptotic explicit and implicit algorithms are suitable for solutions that are of the growing and decaying exponential kinds, respectively, whilst the implicit Euler-Maclaurin algorithm is superior when the solution oscillates, i.e., when there are regions in which both growing and decaying exponential solutions exist
Exponential integration algorithms applied to viscoplasticity
Four, linear, exponential, integration algorithms (two implicit, one explicit, and one predictor/corrector) are applied to a viscoplastic model to assess their capabilities. Viscoplasticity comprises a system of coupled, nonlinear, stiff, first order, ordinary differential equations which are a challenge to integrate by any means. Two of the algorithms (the predictor/corrector and one of the implicits) give outstanding results, even for very large time steps
A viscoplastic model with application to LiF-22 percent CaF2 hypereutectic salt
A viscoplastic model for class M (metal-like behavior) materials is presented. One novel feature is its use of internal variables to change the stress exponent of creep (where n is approximately = 5) to that of natural creep (where n = 3), in accordance with experimental observations. Another feature is the introduction of a coupling in the evolution equations of the kinematic and isotropic internal variables, making thermal recovery of the kinematic variable implicit. These features enable the viscoplastic model to reduce to that of steady-state creep in closed form. In addition, the hardening parameters associated with the two internal state variables (one scalar-valued, the other tensor-valued) are considered to be functions of state, instead of being taken as constant-valued. This feature enables each internal variable to represent a much wider spectrum of internal states for the material. The model is applied to a LiF-22 percent CaF2 hypereutectic salt, which is being considered as a thermal energy storage material for space-based solar dynamic power systems
From differential to difference equations for first order ODEs
When constructing an algorithm for the numerical integration of a differential equation, one should first convert the known ordinary differential equation (ODE) into an ordinary difference equation. Given this difference equation, one can develop an appropriate numerical algorithm. This technical note describes the derivation of two such ordinary difference equations applicable to a first order ODE. The implicit ordinary difference equation has the same asymptotic expansion as the ODE itself, whereas the explicit ordinary difference equation has an asymptotic that is similar in structure but different in value when compared with that of the ODE
Use of Skylab EREP data in a sea-surface temperature experiment
The author has identified the following significant results. A sea surface temperature experiment was studied, demonstrating the feasibility of a procedure for the remote measurement of sea surface temperature which inherently corrects for the effect of the intervening atmosphere without recourse to climatological data. The procedure was applied to Skylab EREP S191 spectrometer data, and it is demonstrated that atmospheric effects on the observed brightness temperature can be reduced to less than 1.0 K
Use of Skylab EREP Data in a Sea Surface Temperature Experiment
There are no author-identified significant results in this report
Use of Skylab EREP data in a sea surface temperature experiment
There are no author-identified significant results in this report
Steady-state and transient Zener parameters in viscoplasticity: Drag strength versus yield strength
A hypothesis is put forth which enables the viscoplastician to formulate a theory of viscoplasticity that reduces, in closed form, to the classical theory of creep. This hypothesis is applied to a variety of drag and yield strength models. Because of two theoretical restrictions that are a consequence of this hypothesis, three different yield strength models and one drag strength model are shown to be theoretically admissible. One of these yield strength models is selected as being the most appropriate representation for isotropic hardening
Use of Skylab EREP data in a sea surface temperature experiment
There are no author-identified significant results in this report
- …