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Abstract

Four, linear, exponential, integration algorithms (two implicit, one explicit and one predic-
tor/corrector) are applied to a viscoplastic model to assess their capabilities. Viscoplasticity
comprises a system of coupled, nonlinear, stiff, first order, ordinary differential equations which
are a challenge to integrate by any means. Two of the algorithms (the predictor/corrector and
one of the implicits) give outstanding results, even for very large time steps.

1 Nomenclature

C

D

h

H

L

n

Q
T

R

t

T

To

Y
Y

Z

Bij

Eij = Eij 1-- -gekk6ij

1
Sij : (Tij -- _6rkk_ij

u_,

o_

IS

IS

IS

IS

IS

IS

1s

is

IS

IS

IS

IS

is

IS

IS

lS

is

is

is

is

is

is

the creep strength.

the drag strength.

the nonlinear hardening parameter for yield strength.
the hardening modulus for back stress.

the limiting state for the dynamic recovery of back stress.

the creep exponent.

the activation energy for creep (or self-diffusion).

the thermal recovery parameter for yield strength.

the universal gas constant, 8.314 J/mol-K.

time, the dependent variable of the ODE.

the absolute temperature.

a reference temperature.

the fraction of yield strength to applied stress at steady state.

the yield strength.

the Zener parameter.

the (deviatoric) back stress tensor.
the deviatoric strain tensor.

the deviatoric stress tensor.

the linear coefficient of the ODE.

the nonhomogeneous contribution to the ODE.

the independent variable of the ODE.

the coefficient of thermal expansion.
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is an increment in time.

is the hardening modulus for yield strength.

is the thermal diffusivity.
is the bulk modulus.

is the shear modulus.

is the Kronecker delta; 1 if i = j, otherwise 0.
IS the infinitesimal strain tensor.

is the (deviatoric) plastic strain tensor.

is the Cauchy stress tensor.
is the effective stress,

is the magnitude of plastic strain rate.

is the magnitude of effective stress.

is the Macauley bracket of x; x if x > 0, otherwise 0.

2 Introduction

In many scientific fields, systems of first order, ordinary differential equations are used to mod-

el physical processes of interest. These equations are often coupled, mathematically stiff and/or

nonlinear, thereby requiring special numerical algorithms for their solution [1]. Viscoplasticity is

an example of such a modelling effort. The literature abounds with papers written on numeri-

cal integration methods applicable to viscoplasticity [2, 3, 4, 5, 6, 7], all of which testify to its

complexity.

The paper begins with a presentation of four, linear, exponential, integration algorithms that

have been recently derived by the authors [8]: two are implicit, the third is explicit, and the fourth is

a predictor/corrector. The next section presents a viscoplastic model applicable to metals and solid

solution alloys at high homologous temperatures. The final section presents numerical solutions for

the viscoplastic model using the various integration algorithms. An appendix provides a discussion

of Newton-Raphson iteration which we use in the solution schemes of the implicit integrators.

3 First Order ODEs

Viscoplasticity presents itself as a system of N (typically 3), coupled, nonlinear, stiff, first order,

ordinary differential equations of the form

L
Xo + U_._ = V_ (for a = 1,2,...,N), (1)

where the )_[t] are the N independent scalar, vector or tensor variables to be solved for. The

dot "' is used to denote differentiation with respect to time, t. The square brackets [.] are used

to denote 'function of', while parentheses (.) and curly brackets {.} are used for mathematical

groupings.

The parameters U_[X_[t],t] and 17_[._f_[t],t] are, in general, functions of the variables )(_ and

t. If neither parameter is a function of the independent variables, then the system of equations

is said to be linear; otherwise, it is nonlinear--as is the case in viscoplasticity. To simplify the

notation, we use square brackets containing time to indicate the dependence of any variable on

both )_;_[t] and t. For example, we write U_[t + At] and _7_[t + At] to denote the values of the

parameters U_ [X_[t + At],t + At] and tT_ [)_[t + At],t + At] at time/+ At.



3.1 Two Implicit Algorithms

A technique like Newton-Raphson iteration (see the Appendix) must be used whenever a system of

first order, ordinary differential equations is to be solved simultaneously using an implicit integration

algorithm. We shall consider the following two implicit solutions for a system of N independent

differential equations, viz. [8]

.At, (2)

for _ = 1,2,...,N, and

Z [t + At]=Zo[t]e- (uoc'j+uot'+ 'll-A'+ ½( 'o[t]e- (uoE'J+Uor'÷A'DA' + + At]).At, (3)

for a = 1,2,..., N. These are the linear, asymptotic (2) and trapezoidal (3), implicit, exponential

solutions for the integration of a system of ordinary differential equations (1). They are referred to

as linear solutions beeuase they were derived using Taylor and Euler-Maclaurin series expansions,

respectively, that were truncated after their linear terms. Higher order (including exact) solutions

can also be found in [8].

For large time steps, At >> l, with U_ > 0, the exponential term becomes small compared with
1, and the asymptotic expansions

lira ._[t + At] _ ly_[t + At]
At--large Uct[t -1- At] (,4,)

and

lira )_o[t + At] × ½17c,[t+ At].At (5)
A t--+large

are obtained for the asymptotic (2) and trapezoidal (3) solutions, respectively. The asymptotic

expansion given in (4) is the correct asymptotic solution for the first order differential equation

(1). Hence, there is an advantage in using (2) over (3)--the asymptotic solution (2)is accurate

and stable for time steps of all sizes for exponentially decaying solutions, like those which occur in

viscoplasticity.

3.2 Explicit Algorithm

Different needs demand different solution techniques, and Newton-Raphson iteration will not always

be the technique of choice. Newton-Raphson iteration is ideally suited for large computer codes

where large time steps are needed to minimize the computation time. But it is not the best choice

when small time steps are required for gaining a detailed picture of a response. For applications of

this type, explicit solution techniques usually work best.

The linear, explicit, exponential, integration algorithm derived in [8] is given by

)(_[t + At] = Xc,[t]e-U'_[t]'ht+V,_[t](1--e-U°[t]'At)_]_ .At, (6)

for a = 1,2,..., N. Equation (6) differs from equation (2) in that all the terms on the right hand

side of (6) are known explicitly; whereas, most of them in equation (2) are only known implicitly.

For large time steps, At >> 1, with Ua > 0, the exponential term becomes small compared with

1, and the asymptotic expansion

lim )_,[t + At] × 17_[t]
Av-.larg_ U,[t---] (7)



is obtainedfor the explicit solution(6). Although the differencesbetweenthe asymptotic(2) and
explicit (6) solutionsbecomenegligiblefor smallAt, the differences between their asymptotic ex-

pansions, equations (4) and (7), can be enormous for large At. If we start at t = 0 and apply a

large time increment At, the solution V_[At]/U_[At] for the implicit approximation is asymptoti-

cal_ correct, whilst that of the explicit solution, V_[0]/Uo[0], corresponds to a ratio of the slopes
of V_ to U_ at the initial time, t = 0. In the case of viscoplasticity, these situations correspond

to a correct viscoplastic solution in the implicit approximation, and an incorrect elastic solution

in the explicit approximation, respectively. In subsequent time steps the explicit approximation

will oscillate around the true solution, but it will not become unstable. These oscillations can be

mitigated only by choosing smaller time steps.

3.3 Predictor/Corrector

Predictor/corrector methods use an explicit algorithm to first look ahead and predict the value

of the function at a future point. Knowing something about the future response of this function,

one then uses an implicit algorithm to go back and make a second, more accurate, correction of

what the future value of this function is. These methods have the advantage of being able to use

the difference between predicted )(_[t + At] and corrected X_[t + At] values to establish an error

which one can use to control the time step size, although that is not done herein.

A predictor/corrector based on linear exponential solutions [8] can be constructed by considering

+ At] = e-.oE,l +  o[t] (1-e-Uot,l2 '[t
_.-_ ,] .At (for a = 1,2,...,N) (8)

for the predictor, and

-,, -, ( 1 - e-U'[t+At]'At _
Xo[t+At] = )_[t]e -U'[t+atl'At + V_[t + At] \ Ug-_T_ ).At (for a = 1,2,...,N) (9)

for the corrector, where

U'[t

The predictor (8) is underdamped while the corrector (9) is overdamped; therefore, an improved

estimate for updating the variable )(_ is obtained by averaging or weighting their values, i.e.

._,[t + At] = ½ ()_'[t + At] + )("[t + At]). (11)

In this integration algorithm, both the predictor and corrector are unconditionally stable, but the

time step size must still be monitored for accuracy.

When considering either the asymptotic, explicit or predictor/corrector algorithm in the neigh-

borhood of U,.At ._ 0, one needs to expand (1 - exp[-Uo.At])/U_.At into a power series in order

to secure a sound computational algorithm.

These four, exponential, integration methods will now be applied to a viscoplastic model rep-

resentative of copper at elevated temperatures.

4 Viscoplastic Model

Here we present a viscoplastic model wh_e the governing system of differential equations is suffi-

ciently complex to warrant a Jacobian of dimension greater than 1. Our implicit integration algo-

rithms have an important advantage over classical algorithms--like backward Euler integration--in
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that they havethe distinct possibilityof substantiallyreductingthe orderof the Jacobian.In this
viscoplasticmodelthereis a reductionin orderfrom a 13x 13 to a 2 × 2 for the Jacobianmatrix
(13is the spatialdimensionfor this systemof equations).This reductionin orderis of importance
from a computationalviewpoint. For a moredetaileddiscussionof viscoplasticityin general,see
Lemaitreand Chaboche[9].

Viscoplasticconstitutivemodelsarecurrentlyfindingapplicationin describingthe ratedepen-
dentplasticresponseof metallicstructuresthat undergosignificanttemperaturechangeovertheir
duty cycle.Theisotropic,stress/strain,constitutiveequationsaregivenby tIooke'slaw,

S/j = 2_ (Eij- QPj) with E_k = 0, (12)

akk = 3_ {Ckk -- c_(T - To)_kk) , (13)

where one sees that the plastic and thermal strains, Q_- and a(T - To)_ij, are eigenstrains for the
deviatoric and hydrostatic responses, respectively. The evolution of plastic strain is described by a

flow law,

.p = lll plI r.j (14)
II-Vll'

a kinetic law,

and two evolutionary laws,

(15)

= rl @[Y]II "tl- r[T,Y]), (16)

2t[Y] "

Viscoplasticity is an internal state variable theory where the internal state variables, Y and Bij in

this case, are governed by separate evolution equations. The evolution of internal state follows a

competitive process between hardening and recovery mechanisms (both thermal and dynamic). The

yield strength Y is a phenomenological representation of material strength; it reflects the density of

dislocations. The back stress Bij is a phenomenological representation of an internal stress state;

it reflects the stress fields set up by dislocations in their heterogeneous substructures.
1

We will consider a high-temperature viscoplastic model--valid for T > _Tm, where Tm is the
absolute melting temperature--which is characterized by material functions that are power-laws;

in particular:

h[Y] = \yC J '

r[T,Y] = o[r](y--_) 3,

(1)L[Y] = Y-1 Y-D

(18)
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Because of the chosen forms for the material functions h, L and r, this viscoplastic model analytically

reduces to Odqvist's [10] classical theory of creep at steady state, where there is no evolution of

the internal state variables, and where

E_j= _ -- IlSll (19)

defines the creep rate, with IlSl[ = x/_s_js_j characterizing the magnitude of deviatoric stress.
For illustrative purposes, we consider the material constants given in Table 1, which approximate

copper behavior in the neighborhood of 500 ° Cin the absence of dynamic recrystallization.

5 Numerical Algorithms

If we differentiate equation (12), combine it with (14), and subtract (17) from both sides; and then

rearrange equations (16) and (17), the following set of differential equations is obtained:

_j + (# + H)II&Pll_ = 2_E_j+ HII&Pll
11_711 L[Y------_Bij, (20)

+ o (r[T'Y] yh[Y]II_PlI) y = o, (21)

B_j+ HII_'II HII_Pll
L[Y------_Bij - I1_11_j" (22)

This system of equations, N = 3, has the form of equation (1) where

)_] =Eij, )_2 =Y, )_3 = Bij, (23)

and

u1 = (_ + H)ll_Vll U2 = r/ /-73- (24)
I1_11 ' ' L[Y] '

HII_Ol_______JI
V1 = 21_Ei5+ L[Y] B,j, V2 = o, v3 = HII_PlIII_II_'y" (25)

These are the governing differential equations for our viscoplastic model when cast into the form

of equation (1).

Upon examining equations (20-22), it becomes apparent why our Jacobian is at most a 3 x 3

matrix (one for each of the three differential equations), whereas the Jacobian for backward Euler

integration is a 13 x 13 matrix (one for each of the thirteen spatial dimensions: six for the effective

stress, six for the back stress, and one for the yield strength). However, our Jacobian must be further

reduced to a 2 x 2 matrix. This is because U1 and U3 both become asymptotically proportional

to IlkPll at steady state, and are therefore linearly dependent at steady state. Hence, either the

evolution equation for back stress (22) or the evolution equation for effective stress (20) must not

contribute to the construction of the Jacobian in order to prevent the Jacobian from becoming

singular. Both approaches will work; however, they are not equivalent in computational efficiency.

It is much more economical to construct the Jacobian matrix using equations (20 and 21) than

using equations (21 and 22), because equation (20) contains information about the elastic response

which is not present in equation (22).



5.1 Asymptotic Algorithm

The linear, implicit, asymptotic, exponential, integration Mgorithm, equation (2), can be written
as

Xa[t + At] = ._[t] e-e_'At + _[t + At] (1- e-_o'zat )_--:-_ At for c_ = 1,2 (26)

where, for our viscoplastic model,

01= (' + H)II Pll and 02 = q (27)
I1 11

which are both evaluated at time t + At. Thus, the iteration functions become

71 = + tZ)ll  [{ol, II _ {e,}:,, (28)
II

and

- (29)

which we have solved through Newton-Raphson iteration (cf Appendix). The derivatives required

to construct this 2 x 2 Jacobian matrix, e.g. 01l p[I/00 , etc., have been determined numerically,

for in this case the determination of numerical derivatives is computationally more efficient than
determining them analytically.

The Newton-Raphson iterations are accomplished by the following scheme. First, values of 01

and 02 are guessed. We set their values to 0.1 for the first time step, and used the converged values

of the prior time step as the initial guess for all time steps thereafter. In addition, we also guess

the values of Eij, Y and Bij in like manner. The forcing vectors, 171, 172and I73 are then computed

and used with 01 and g2 in the recursion relationships to determine )_1, )_2 and )_3. Estimates

of Eij_2 Y and Bij are now available to compute improved estimates of the forcing vectors, 171, 172

and Va for the next iteration. It is evident from the preceding that this algorithm is basically one

iteration in arrears in estimating _ij, Y and Bij.

The capability of this integration method is demonstrated in Fig. 1. The solid curve was

obtained using 500 integration steps, and is considered to be the converged solution. In this

example, a homogeneous block of material is sheared in a specified direction at a constant rate of

straining to a fixed value of engineering strain, i.e. 3' = 2e12. This block of material is then sheared

in the opposite direction to a self-similar value of engineering strain. The direction of loading is

changed one last time to complete the loading cycle. The differences between the converged response

and those determined using 25 and 3 integration steps are very small; however, there is a small

amount of measurable error for the case of 10 integration steps at the knee of the curve. 1 These

errors are enumerated in Table 2. At first glance, the fact that 3 integration steps do better than

10 seems contradictory, tIowever the contradiction is apparent only, because the three integration

points are close to their asymptotic solutions where the implicit, asymptotic, integration method

is very accurate. The regions within which the 10 integration points are in greatest error are the

transient domains where the back stress is rapidly evolving.

One important observation about this integration method is that the error generated in the

transient domains does not propagate with the solution into the asymptotic domains. This is

because the correct asymptotic solution (4) of the differential equation (1) is contained within the

linear, implicit, asymptotic, integration method.

1For all of the results presented in this paper, none of the time steps were subincremented.
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The increasein the shearstressfrom the first reversalto the final state is dueto a gradual
increasein the valueof theyieldstrengthY over the loading history, i.e. the material is gradually

getting stronger because of work hardening. The smooth curvature observed in the stress-strain

response of each of the three loading segments is due to the rapid evolution of the back stress Bij
over each segment.

5.2 Trapezoidal Algorithm

For implicit, trapezoidal, Euler-Maclaurin integration, one can write the exponential solution (3)
as

Xo[t + At] = _,[t]e -°_''At + ½ (_',_[t]e -e''at + 'V_,[t+ At]).At

where, for our viscoplastic model,

for a = 1, 2 (30)

+ H (ll_P[t]ll II_P[t+/Xt]lt) (31)e,- 2 \ll_[t]ll + II_[t+/Xt]ll '

and

O_ = _r/_(r[t]- Yttlh[tlll_'[t]ll + tit + At]- y[th[t++Atlll_P[t_t]+ _t]ll). .

The associated iteration functions are therefore given by

.T1 [{¢)Z}_] - # +2H \_(lleP[t]ll + II_P[(o"e2L]II)II_[Iel}_]II- {e,}_,

and

(32)

(33)

= 2r/ (r[t]- Y[t]h[t]ll_'[t]ll+

+ Y[{e_}_] J (34)

which are solved through Newton-Raphson iteration, as described in the Appendix.

The capability of this integration method is shown in Fig. 2 for the same loading history that

was used in Fig. 1. The solid curve represents 500 integration points, and is equivalent to the

converged response of Fig. l, except at the locations of load reversal. The errors incurred by using

fewer time steps, viz. 25, l0 and 3, are given in Table 2. Clearly one must monitor the size of

the time step when using trapezoidal integration so as to secure accurate answers. Of the four,

exponential, integration methods investigated herein for the numerical integration of viscoplastic

models, the trapezoidal method is the least desirable. However for other applications, it can be the

preferred method of integration [8].

It is apparent in Fig. 2 that the trapezoidal solution does not converge towards the asymptotic

solution, as is the case with the asymptotic integration method. The inaccuracies attendant on

the larger time steps are due to the representation in equation (20). The right hand side of this

equation contains the term II_Pll which depends in a highly nonlinear manner on the variable Eij
on the left hand side of the equation.



5.3 Explicit Algorithm

The linear, explicit, exponential, integration algorithm is much simpler than the prior two algo-

rithms in that an iterative solution procedure is not required, and therefore there is no need to

construct a Jacobian. The integration is effected by directly substituting the J_'s, U's and l?'s of

equations (23-25) into the recursive solution (6).

The capability of this integration method is demonstrated in Fig. 3. Again, the solid curve

represents the converged response. There is less error with this method than with the trapezoidal

method for the larger time steps, as shown in Table 2. This is suprising at first glance because the

trapezoidal method is implicit. The reason why the explicit algorithm does so well is that it contains

the correct form for the asymptotic solution--the trapezoidal algorithm does not. Although the

form of the asymptotic solution is correct, i.e. P'_,/U_, it is evaluated at time t instead of time

t + At, as it should be. As a consequence, several time steps must be incurred along the loading

path to secure an accurate result, as observed in Fig. 3. If the time steps become too large the

solution will oscillate, and the extent of oscillation will increase with the size of the time step.

For comparative purposes with Fig. 3, calculations obtained with the well-known forward Euler

method are presented in Fig. 4. Our explicit method is the exponential analog of the forward Euler

method. A comparison of errors between the explicit and forward Euler methods is also given in

Table 2. It is apparent from both the figures and the table that the explicit exponential method is

better than the explicit Enler method.

5.4 Predictor/Corrector

Like the explicit algorithm, the exponential predictor/corrector is simple to construct because a

Jacobian is not required. The integration of the predictor follows the same logic as the explicit

algorithm which was just discussed. With the predicted quantities ._[t + At] now known, the U's

and l_'s are updated to time t + At, and integration via the corrector is effected by substituting

equations (23-25) into the recursive implicit solution (9). For the results presented herein, the

predictor and corrector were both integrated once at each time step--there was no iteration of the
corrector.

The ability of this integration method" is demonstrated in Figs. 5 and 6. As before, the solid

curves represent the converged solution and were obtained using 500 integration steps. In Fig. 5,

the results that are presented are tile corrected (not weighted) values X" coming from equation (9).

In Fig. 6, the results that are presented are the averaged (weighted) values ½(3_'+ X") coming from

equation (11). In both cases, the presence of the corrector dampens the oscillations that are present

in the explicit (predictor) solution, cf. Fig. 3. The reason why an improved result is obtained by

averaging the predicted and corrected values is because the predictor is underdamped while the

corrector is overdamped. Consequently, averaging them tends to remove much of the unwanted

damping.

For comparative purposes with our weighted predictor/corrector, i.e. Fig. 6, calculations ob-

tained with the well-known Heun method are presented in Fig. 7. A comparison of errors between

these two methods is also given in Table 2. The weighted predictor/corrector is the exponential

analog of Heun's method, which is a second order Runge-Kutta method. It is apparent from both

the figures and the table that the exponential, weighted, predictor/corrector is better than the
Heun method.
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6 Concluding Remarks

Four, linear, exponential, integration algorithms that we derived in [8] have been applied to a

viscoplastic model which is composed of a system of coupled, nonlinear, stiff, first order, ordinary

differential equations. Of these four methods, two have been found to have superior properties for
the solution of these equations. The implicit asymptotic algorithm is the most accurate, but it

requires the construction of a Jacobian matrix. It is recommended for large computer codes like

finite elements. The averaged or weighted predictor/corrector also has exceptional accuracy, plus

it has the advantage of not needing a Jacobian. It is recommended for smaller codes, and for those

cases when implicit algorithms are not practical, e.g. our composite micromechanics theory [11].

For exponentially decaying solutions, like those which occur in viscoplasticity, these two inte-

gration algorithms have the following desirable properties:

• They are asymptotically correct.

• They are stable and accurate for both small and large time steps.

• They do not propagate error.

• They are computationally efficient.

When compared with equivalent classical methods, the exponential integration algorithms are supe-

rior. This is because viscoplasticity has exponential solutions for which the exponential integration
algorithms are better suited.
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Appendix: Newton-Raphson Iteration

1 (U_[t] + U_[t + At]) in (3), areIn general the _, where Q, = Ua[t + At] in (2) or _ ---

functions of the )_13[t + At] which are in turn, via (2) or (3), functions of the _v[t + At], and
therefore

_-[X*3 [Q_]] = _, [Q_] (for _,/_,u = 1 to N), (A1)

or equivalently,

where

f. = 0, (A2)

.T_ [Q_,]= j(j, [e,] - _. (A3)

If {L)_}A is the ,,_th guess for vector a%, then the true solution satisfying (2) or (3) may be written
as

g_ = {_,}.\ + c., (A4)

where the correction vector, c_, is the amount by which the true vector differs from the guessed

value. Inserting this definition into (A2), and expanding the resultant by Taylor's theorem while

retaining only the first order terms leads to

g 05r [{Q_}X] c13 = O. (Ah)

13=1

A solution to the resulting linear system of equations,

N

Y_ J_*3c.3 = -5r_[{Q,'}_] (for a = 1 to N), (A6)
,3=1

for the unknown correction vector, cz, with Jacobian,

0 {_.),3}:_ , (A7)

can be obtained by Cramer's rule (N _< 3) or Gaussian elimination (N >_ 4). This leads to an

improved value for the solution vector, {_,)_+1, where

{Y_,}A+, = {Q_}_ + c_,, (A8)

11



which is iterateduntil the contributionfrom c_ becomes negligible (we used Ilcll< 0.000111ell_as

our convergence criterion).

In order to retain algorithmic stability, it is necessary to bound the size of the correction vector
so that

Ilcll < T II_ll_ (A9)

(we typically set T ,_ 0.1) where

Ilcll = x/c12+ c22+"" + CN2

That is, if

and II_llx = _/{th}_ + {y2}_ + ""+ {t_N}_ • (AIO)

T I1_11_ V_ e {1,N} (All)
IIcII> T II_II set c. _ c. IIc II

in equation (A8). This slows down the rate of convergence, but it keeps the procedure stable

and free of oscillations. What we are actually doing is keeping the solution within the domain of

applicability of the truncated Taylor expansion given in equation (A5).

If possible, the Jacobian (A7) should be determined analytically; if not, it can be acquired

numerically, but often times at a greater numerical expense. Because Newton-Raphson iteration

has quadratic convergence, the number of iterations A required for convergence is usually few in

number. One reasonable initial guess to advance the iteration process to the next step is to use the

values from the last time step, i.e. set _o_[t + At]_=_ = t_[t].

12



Table1: Elasticandviscoplastic
materialconstants.

Constant
c_

t_

#
C

D

H

n

Q
Y

rl

Units

1/° C
MPa

MPa

MPa

MPa

MPa

J/tool.

MPa

Value

20 × 10 -6

95,000

30,000
0.8

0.016

15,000
5

200,000
0.1

30,000

Table 2: Percent error in the range of stress, 100.1(a - o'50o)/O'maxJ , evaluated at two points in the

third branch of each curve. Errors greater than 100% are denoted as > 100. There the

algorithm is outside its domain of applicability and the error is meaningless.

Integration Points
Algorithm

Type

Asymptotic

Trapezoidal

Explicit

Forward Euler

Predictor/Corrector

Weighted Pred/Corr
tIeun

= 0.0 e = 0.005

10 25 3 10 25

9.8 2.1 1.8 1.2 0.3

26.2 2.3 > 100 38.7 6.2

19.6 0.9 56.5 12.5 0.0

17.3 19.8 >100 >100 1.5

23.9 5.0 > 100 16.1 0.7

1.3 0.0 45.3 0.6 0.3

62.0 15.8 > 100 26.0 1.6

13
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Figure 1.--Linear, implicit, asymptotic solu-

tions for the viscoplastic representation of

copper. _,=_O.O01s -1. T=500°C. YIt=o

= 1 MPa. The integration points were evenly

spaced: -- represents 500 steps, x repre-

sents 25 steps, + represents 10 steps, and

o represents 3 steps.
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Engineering Shear Strain
Figure 2.--Trapezoidal Euler-Maclaurin solu-

tions for the viscoplastic representation of

copper. -# = +O.O01s -1. T = 500 °C. YI I= 0

= 1 MPa. The integration points were evenly

spaced:- represents 500 steps, x repre-

sents 25 steps, and + represents 10 steps.

Stresses for 3 integration steps exceeded the

plotted range of stress.
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Engineering Shear Strain
Figure 3.--Linear explicit solutions for the visco-

plastic representation of copper. -_ = +_O.OOts -1 .

T = 500 °C. YI t = o = 1 MPa. The integration

points were evenly spaced: -- represents 500

steps, x represents 25 steps, and + repre-

sents 10 steps. Stresses for 3 integration steps

exceeded the plotted range of stress.
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Engineering Shear Strain
Figure 4.--Forward Euler solutions for the visco-

plastic representation of copper. -_= +0.001s -1 .

T = 500 '°C. YI t = 0 = 1 MPa. The integration

points were evenly spaced: -- represents 500

steps and x represents 25 steps. Stresses for

10 and 3 integration steps exceeded the plotted

range of stress.
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Engineering Shear Strain
Figure 5.--Linear predictor/corrector solutions

(not weighted) for the viscoplastic represen-

tation of copper• _, = _+0.001s -1 . T = 500 °C.

YI t = 0 = 1 MPa. The integration points were

evenly spaced. -- represents 500 steps, x

represents 25 steps, and + represents 10

steps. Stresses for 3 integration steps ex-

ceeded the plotted range of stress.
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Figure 6.--Linear predictor/correclor solutions

(weighted) for the viscoplastic representation

olcopper. 'Y =-*0.00Is -1. T=500°C. YIt=0

= 1 MPa. The integration points were evenly

spaced. -- represents 500 steps, x repre-

sents 25 steps, and + represents 10 steps•

Stresses for 3 integralion steps exceeded the

plotted range of stress.
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Figure 7.--Heun (a second order Runge-Kutta)

solutions ier the viscoptastic representation of

copper. _=+0.O01s -1. T=500°C. Ylt=0

= 1 MPa. The integration points were evenly

spaced• -- represents 500 sleps and x re-

presents 25 steps• Stresses for the 10 and 3

integration steps exceeded the plotted range

of stress•
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