86 research outputs found
Using digital technologies to facilitate social inclusion during the COVID-19 pandemic: Experiences of co-resident and non-co-resident family carers of people with dementia from DETERMIND-C19
Background
The COVID-19 pandemic triggered rapid and unprecedented changes in the use of digital technologies to support people's social inclusion. We examined whether and how co-resident and non-co-resident family carers of people with dementia engaged with digital technologies during this period.
Methods
Throughout November 2020-February 2021, we interviewed 42 family carers of people with dementia from our DETERMIND-C19 cohort. Preliminary analysis was conducted through Framework analysis, followed by an inductive thematic analysis.
Findings
Digital technologies served as a Facilitator for social inclusion by enabling carers to counter the effects of the differing restrictions imposed on them so they could remain socially connected and form a sense of solidarity, access resources and information, engage in social and cultural activities and provide support and independence in their caring role. However, these experiences were not universal as carers discussed some Challenges for tech inclusion, which included preferences for face-to-face contact, lack of technological literacy and issues associated with the accessibility of the technology.
Conclusion
Many of the carers engaged with Information and Communication Technologies, and to a lesser extent Assistive Technologies, during the pandemic. Whilst carers experienced different challenges due to where they lived, broadly the use of these devices helped them realise important facets of social inclusion as well as facilitated the support they provided to the person with dementia. However, to reduce the βdigital divideβ and support the social inclusion of all dementia carers, our findings suggest it is essential that services are attuned to their preferences, needs and technological abilities
The endogenous anti-angiogenic VEGF isoform, VEGF165b inhibits human tumour growth in mice
Vascular endothelial growth factor-A is widely regarded as the principal stimulator of angiogenesis required for tumour growth. VEGF is generated as multiple isoforms of two families, the pro-angiogenic family generated by proximal splice site selection in the terminal exon, termed VEGFxxx, and the anti-angiogenic family formed by distal splice site selection in the terminal exon, termed VEGFxxxb, where xxx is the amino acid number. The most studied isoforms, VEGF165 and VEGF165b have been shown to be present in tumour and normal tissues respectively. VEGF165b has been shown to inhibit VEGF- and hypoxia-induced angiogenesis, and VEGF-induced cell migration and proliferation in vitro. Here we show that overexpression of VEGF165b by tumour cells inhibits the growth of prostate carcinoma, Ewing's sarcoma and renal cell carcinoma in xenografted mouse tumour models. Moreover, VEGF165b overexpression inhibited tumour cell-mediated migration and proliferation of endothelial cells. These data show that overexpression of VEGF165b can inhibit growth of multiple tumour types in vivo indicating that VEGF165b has potential as an anti-angiogenic, anti-tumour strategy in a number of different tumour types, either by control of VEGF165b expression by regulation of splicing, overexpression of VEGF165b, or therapeutic delivery of VEGF165b to tumours
Mapping the Binding between the Tetraspanin Molecule (Sjc23) of Schistosoma japonicum and Human Non-Immune IgG
BACKGROUND: Schistosomal parasites can establish parasitization in a human host for decades; evasion of host immunorecognition including surface masking by acquisition of host serum components is one of the strategies explored by the parasites. Parasite molecules anchored on the membrane are the main elements in the interaction. Sjc23, a member of the tetraspanin (TSP) family of Schistosoma japonicum, was previously found to be highly immunogenic and regarded as a vaccine candidate against schistosomiasis. However, studies indicated that immunization with Sjc23 generated rapid antibody responses which were less protective than that with other antigens. The biological function of this membrane-anchored molecule has not been defined after decades of vaccination studies. METHODOLOGY AND PRINCIPAL FINDINGS: In this study, we explored affinity pull-down and peptide competition assays to investigate the potential binding between Sjc23 molecule and human non-immune IgG. We determined that Sjc23 could bind human non-immune IgG and the binding was through the interaction of the large extra-cellular domain (LED) of Sjc23 (named Sjc23-LED) with the Fc domain of human IgG. Sjc23 had no affinity to other immunoglobulin types. Affinity precipitation (pull-down assay) in the presence of overlapping peptides further pinpointed to a 9-amino acid motif within Sjc23-LED that mediated the binding to human IgG. CONCLUSION AND SIGNIFICANCE: S. japonicum parasites cloak themselves through interaction with human non-immune IgG, and a member of the tetraspanin family, Sjc23, mediated the acquisition of human IgG via the interaction of a motif of 9 amino acids with the Fc domain of the IgG molecule. The consequence of this interaction will likely benefit parasitism of S. japonicum by evasion of host immune recognition or immunoresponses. This is the first report that an epitope of schistosomal ligand and its immunoglobulin receptor are defined, which provides further evidence of immune evasion strategy adopted by S. japonicum
Population Structure of Pseudomonas aeruginosa from Five Mediterranean Countries: Evidence for Frequent Recombination and Epidemic Occurrence of CC235
Several studies in recent years have provided evidence that Pseudomonas aeruginosa has a non-clonal population structure punctuated by highly successful epidemic clones or clonal complexes. The role of recombination in the diversification of P. aeruginosa clones has been suggested, but not yet demonstrated using multi-locus sequence typing (MLST). Isolates of P. aeruginosa from five Mediterranean countries (nβ=β141) were subjected to pulsed-field gel electrophoresis (PFGE), serotyping and PCR targeting the virulence genes exoS and exoU. The occurrence of multi-resistance (β₯3 antipseudomonal drugs) was analyzed with disk diffusion according to EUCAST. MLST was performed on a subset of strains (nβ=β110) most of them had a distinct PFGE variant. MLST data were analyzed with Bionumerics 6.0, using minimal spanning tree (MST) as well as eBURST. Measurement of clonality was assessed by the standardized index of association (IAS). Evidence of recombination was estimated by ClonalFrame as well as SplitsTree4.0. The MST analysis connected 70 sequence types, among which ST235 was by far the most common. ST235 was very frequently associated with the O11 serotype, and frequently displayed multi-resistance and the virulence genotype exoSβ/exoU+. ClonalFrame linked several groups previously identified by eBURST and MST, and provided insight to the evolutionary events occurring in the population; the recombination/mutation ratio was found to be 8.4. A Neighbor-Net analysis based on the concatenated sequences revealed a complex network, providing evidence of frequent recombination. The index of association when all the strains were considered indicated a freely recombining population. P. aeruginosa isolates from the Mediterranean countries display an epidemic population structure, particularly dominated by ST235-O11, which has earlier also been coupled to the spread of Γ-lactamases in many countries
Multi-modal big-data management for film production
Modern digital film production uses large quantities of data from videos, digital photographs, LIDAR scans, spherical photography and many other sources to create the final film frames. The processing and management of this massive amount of heterogeneous data consumes enormous resources. We propose an integrated pipeline for 2D/3D data registration for film production. We present the prototype application Jigsaw, which allows users to efficiently manage and process various data from digital photographs to 3D point clouds. A key requirement in the use of multi-modal 2D/3D data for content production is the registration into a common coordinate frame. 3D geometric information is reconstructed from 2D data and registered to the reference 3D models using 3D feature matching. We provide a public multi-modal database captured with a wide variety of devices in different environments to assist further research. An order of magnitude gain in efficiency is achieved with the proposed approach
Multi-modal big data management for film production
Modern digital film production uses large quantities of data from videos, digital photographs, LIDAR scans, spherical photography and many other sources to create the final film frames. The processing and management of this massive amount of heterogeneous data consumes enormous resources. We propose an integrated pipeline for 2D/3D data registration for film production. We present the prototype application Jigsaw, which allows users to efficiently manage and process various data from digital photographs to 3D point clouds. A key requirement in the use of multi-modal 2D/3D data for content production is the registration into a common coordinate frame. 3D geometric information is reconstructed from 2D data and registered to the reference 3D models using 3D feature matching. We provide a public multi-modal database captured with a wide variety of devices in different environments to assist further research. An order of magnitude gain in efficiency is achieved with the proposed approach
- β¦