4,847 research outputs found

    Spectral variability in Swift and Chandra observations of the Ultraluminous source NGC 55 ULX1

    Get PDF
    NGC 55 ULX1 is a bright Ultraluminous X-ray source located 1.78 Mpc away. We analysed a sample of 20 Swift observations, taken between 2013 April and August, and two Chandra observations taken in 2001 September and 2004 June. We found only marginal hints of a limited number of dips in the light curve, previously reported to occur in this source, although the uncertainties due to the low counting statistics of the data are large. The Chandra and Swift spectra showed clearly spectral variability which resembles those observed in other ULXs. We can account for this spectral variability in terms of changes in both the normalization and intrinsic column density of a two-components model consisting of a blackbody (for the soft component) and a multicolour accretion disc (for the hard component). We discuss the possibility that strong outflows ejected by the disc are in part responsible for such spectral changes.Comment: 9 pages, 6 figure; accepted to be published on MNRA

    First order-rewritability and containment of conjunctive queries in horn description logics

    Get PDF
    International audienceWe study FO-rewritability of conjunctive queries in the presence of ontologies formulated in a description logic between EL and Horn-SHIF, along with related query containment problems. Apart from providing characterizations, we establish complexity results ranging from EXPTIME via NEXPTIME to 2EXPTIME, pointing out several interesting effects. In particular, FO-rewriting is more complex for conjunctive queries than for atomic queries when inverse roles are present, but not otherwise

    The two Ultraluminous X-ray sources in the galaxy NGC 925

    Get PDF
    NGC 925 ULX-1 and ULX-2 are two ultraluminous X-ray sources in the galaxy NGC 925, at a distance of 8.5 Mpc. For the first time, we analyzed high quality, simultaneous XMM-Newton and NuSTAR data of both sources. Although at a first glance ULX-1 resembles an intermediate mass black hole candidate (IMBH) because of its high X-ray luminosity ((2(2−-4)×10404)\times10^{40} erg s−1^{-1}) and its spectral/temporal features, a closer inspection shows that its properties are more similar to those of a typical super-Eddington accreting stellar black hole and we classify it as a `broadened disc' ultraluminous X-ray source. Based on the physical interpretation of this spectral state, we suggest that ULX-1 is seen at small inclination angles, possibly through the evacuated cone of a powerful wind originating in the accretion disc. The spectral classification of ULX-2 is less certain, but we disfavour an IMBH accreting at sub-Eddington rates as none of its spectral/temporal properties can be associated to either the soft or hard state of Galactic accreting black hole binaries.Comment: Accepted on MNRAS with very minor comments, 7 pages, 5 figures, 1 tabl

    An important role for Myb-MuvB and its target gene KIF23 in a mouse model of lung adenocarcinoma

    Get PDF
    The conserved Myb-MuvB (MMB) multiprotein complex has an important role in transcriptional activation of mitotic genes. MMB target genes are overexpressed in several different cancer types and their elevated expression is associated with an advanced tumor state and a poor prognosis. This suggests that MMB could contribute to tumorigenesis by mediating overexpression of mitotic genes. However, although MMB has been extensively characterized biochemically, the requirement for MMB in tumorigenesis in vivo has not been investigated. Here we demonstrate that MMB is required for tumor formation in a mouse model of lung cancer driven by oncogenic K-RAS. We also identify a requirement for the mitotic kinesin KIF23, a key target gene of MMB, in tumorigenesis. RNA interference-mediated depletion of KIF23 inhibited lung tumor formation in vivo and induced apoptosis in lung cancer cell lines. Our results suggest that inhibition of KIF23 could be a strategy for treatment of lung cancer

    Giant spin canting in the S = 1/2 antiferromagnetic chain [CuPM(NO3)2(H2O)2]n observed by 13C-NMR

    Full text link
    We present a combined experimental and theoretical study on copper pyrimidine dinitrate [CuPM(NO3)2(H2O)2]n, a one-dimensional S = 1/2 antiferromagnet with alternating local symmetry. From the local susceptibility measured by NMR at the three inequivalent carbon sites in the pyrimidine molecule we deduce a giant spin canting, i.e., an additional staggered magnetization perpendicular to the applied external field at low temperatures. The magnitude of the transverse magnetization, the spin canting of 52 degrees at 10 K and 9.3 T and its temperature dependence are in excellent agreement with exact diagonalization calculations.Comment: 5 pages, 6 Postscript figure

    Properties of starspots on CoRoT-2

    Full text link
    As a planet eclipses its parent star, a dark spot on the surface of the star may be occulted, causing a detectable variation in the light curve. A total of 77 consecutive transit light curves of CoRoT-2 were observed with a high temporal resolution of 32 s, corresponding to an uninterrupted period of 134 days. By analyzing small intensity variations in the transit light curves, it was possible to detect and characterize spots at fixed positions (latitude and longitude) on the surface of the star. The model used simulates planetary transits and enables the inclusion of spots on the stellar surface with different sizes, intensities (i.e. temperatures), and positions. Fitting the data by this model, it is possible to infer the spots physical characteristics. The fits were either in spot longitude and radius, with a fixed intensity, or in spots longitude and intensity, for spots of constant size. Before the modeling of the spots were performed, the planetary radius relative to the star radius was estimated by fitting the deepest transit to minimize the effect of spots. A slightly larger (3%) radius, 0.172 Rstar, resulted instead of the previously reported 0.1667 Rstar . The fitting of the transits yield spots, or spot groups, with sizes of ranging from 0.2 to 0.7 planet radius, Rp, with a mean of (0.41 +/- 0.13) Rp (~100,000 km), resulting in a stellar area covered by spots within the transit latitudes of 10-20%. The intensity varied from 0.4 to 0.9 of the disk center intensity, Ic, with a mean of (0.60 +/- 0.19) Ic, which can be converted to temperature by assuming an effective temperature of 5625 K for the stellar photosphere, the spots temperature ranges mainly from 3600 to 5000 K. The results from the spot modeling are in agreement with those found for magnetic activity analysis from out of transit data of the same star.Comment: 7 pages, 11 figure

    Disorder-induced Spin Gap in the Zigzag Spin-1/2 Chain Cuprate Sr_{0.9}Ca_{0.1}CuO_2

    Full text link
    We report a comparative study of 63Cu Nuclear Magnetic Resonance spin lattice relaxation rates, T_1^{-1}, on undoped SrCuO_2 and Ca doped Sr_{0.9}Ca_{0.1}CuO_2 spin chain compounds. A temperature independent T_1^{-1} is observed for SrCuO_2 as expected for an S=1/2 Heisenberg chain. Surprisingly, we observe an exponential decrease of T_1^{-1} for T < 90,K in the Ca-doped sample evidencing the opening of a spin gap. The data analysis within the J_1-J_2 Heisenberg model employing density-matrix renormalization group calculations suggests an impurity driven small alternation of the J_2-exchange coupling as a possible cause of the spin gap.Comment: 4 pages, 4 figure

    Enhancing in planta gene targeting efficiencies in Arabidopsis using temperature-tolerant CRISPR/LbCas12a

    Get PDF
    Enhancing in planta gene targeting efficiencies in Arabidopsis using temperature-tolerant CRISPR/LbCas12
    • …
    corecore