7 research outputs found

    Asymptotic properties of Born-improved amplitudes with gauge bosons in the final state

    Get PDF
    For processes with gauge bosons in the final state we show how to continuously connect with a single Born-improved amplitude the resonant region, where resummation effects are important, with the asymptotic region far away from the resonance, where the amplitude must reduce to its tree-level form. While doing so all known field-theoretical constraints are respected, most notably gauge-invariance, unitarity and the equivalence theorem. The calculations presented are based on the process ffˉ→ZZf\bar{f}\to ZZ, mediated by a possibly resonant Higgs boson; this process captures all the essential features, and can serve as a prototype for a variety of similar calculations. By virtue of massive cancellations the resulting closed expressions for the differential and total cross-sections are particularly compact.Comment: 23 pages, Latex, 4 Figures, uses axodra

    Two-loop O(GF2MH4){\rm O}\left(G_F^2M_H^4\right) corrections to the fermionic decay rates of the Higgs boson

    Full text link
    We calculate the dominant O(GF2MH4){\rm O}\left(G_F^2M_H^4\right) two-loop electroweak corrections to the fermi\-onic decay widths of a heavy Higgs boson in the Standard Model. Use of the Goldstone-boson equivalence theorem reduces the problem to one involving only the physical Higgs boson HH and the Goldstone bosons w±w^\pm and zz of the unbroken theory. The two-loop corrections are opposite in sign to the one-loop electroweak corrections, exceed the one-loop corrections in magnitude for MH>1114 GeVM_H>1114\ {\rm GeV}, and increase in relative magnitude as MH2M_H^2 for larger values of MHM_H. We conclude that the perturbation expansion in powers of GFMH2G_FM_H^2 breaks down for MH≈1100 GeVM_H\approx 1100\ {\rm GeV}. We discuss briefly the QCD and the complete one-loop electroweak corrections to H→bbˉ, ttˉH\rightarrow b\bar{b}, \,t\bar{t}, and comment on the validity of the equivalence theorem. Finally we note how a very heavy Higgs boson could be described in a phenomenological manner.Comment: 24 pages, RevTeX file, 4 figures in a separate compressed uuencoded Postscript file or available by mail on request. Fig. 1 not included see Figs. 1, 2 in Phys. Rev. D 48, 1061 (1993
    corecore