610 research outputs found

    A combinatorial approach to metamaterials discovery

    No full text
    Some fifteen years ago a paper reporting a combinatorial approach to materials discoveries revolutionized materials research and other disciplines such as chemistry and pharmacology [1]. Here we report on how a combinatorial approach combined with advanced nanofabrication helps to discover photonic metamaterials optimized for prescribed functionalities

    Three-dimensional conceptual model for service-oriented simulation

    Full text link
    In this letter, we propose a novel three-dimensional conceptual model for an emerging service-oriented simulation paradigm. The model can be used as a guideline or an analytic means to find the potential and possible future directions of the current simulation frameworks. In particular, the model inspects the crossover between the disciplines of modeling and simulation, service-orientation, and software/systems engineering. Finally, two specific simulation frameworks are studied as examples.Comment: 7 pages, 1 figures, 3 table, Journal of Zhejiang University SCIENCE A, 2009, 10(8): 1075-108

    A combinatorial approach to metamaterials discovery

    Get PDF
    We report a high throughput combinatorial approach to photonic metamaterial optimization. The new approach is based on parallel synthesis and subsequent optical characterization of large numbers of spatially addressable nanofabricated metamaterial samples (libraries) with quasi-continuous variation of design parameters under real manufacturing conditions. We illustrate this method for Fano-resonance plasmonic nanostructures, arriving at explicit recipes for high quality factors needed for switching and sensing applications

    A new type of optical activity in a toroidal metamaterial

    No full text
    We demonstrate experimentally and numerically the first ever observation of optical activity in a chiral metamaterial that is underpinned by the exotic resonant combination of an electric quadrupole and the elusive toroidal dipole

    Toroidal circular dichroism

    No full text
    We demonstrate that the induced toroidal dipole, represented by currents flowing on the surface of a torus, makes a distinct and indispensable contribution to circular dichroism. We show that toroidal circular dichroism supplements the well-known mechanism involving electric dipole and magnetic dipole transitions. We illustrate this with rigorous analysis of the experimentally measured, polarization-sensitive transmission spectra of an artificial metamaterial, constructed from elements of toroidal symmetry. We argue that toroidal circular dichroism shall be found in large biomolecules with elements of toroidal symmetry and should be taken into account in the interpretation of circular dichroism spectra of organics

    Tunable plasmonic luminescence in reconfigurable metamaterials

    No full text
    We show that new intense luminescence lines associated with transitions from collective plasmonic states below the Fermi level can be artificially created by metamaterial nanostructuring of plasmonic metals and tuned by nanoscale reconfiguration of metamaterial. We report on the experimental demonstration of a new radiation phenomenon on the nanoscale and its engineering into a reconfigurable metadevice: luminescence emission lines within the Fermi sea can be created by nanopatterning metal surfaces and controlled by external electrical inputs. Luminescence emission lines are associated with the decay of plasmonic excitation and are spectrally linked to the plasmonic absorption lines. Wavelength, polarization and intensity of metallic luminescence can be flexibly and independently adjusted by tweaking the geometric parameters of the metamaterial design similar to the way nanostructuring helps engineering semiconductor multiple quantum well and quantum dot luminescence

    Probing For New Physics and Detecting non linear vacuum QED effects using gravitational wave interferometer antennas

    Get PDF
    Low energy non linear QED effects in vacuum have been predicted since 1936 and have been subject of research for many decades. Two main schemes have been proposed for such a 'first' detection: measurements of ellipticity acquired by a linearly polarized beam of light passing through a magnetic field and direct light-light scattering. The study of the propagation of light through an external field can also be used to probe for new physics such as the existence of axion-like particles and millicharged particles. Their existence in nature would cause the index of refraction of vacuum to be different from unity in the presence of an external field and dependent of the polarization direction of the light propagating. The major achievement of reaching the project sensitivities in gravitational wave interferometers such as LIGO an VIRGO has opened the possibility of using such instruments for the detection of QED corrections in electrodynamics and for probing new physics at very low energies. In this paper we discuss the difference between direct birefringence measurements and index of refraction measurements. We propose an almost parasitic implementation of an external magnetic field along the arms of the VIRGO interferometer and discuss the advantage of this choice in comparison to a previously proposed configuration based on shorter prototype interferometers which we believe is inadequate. Considering the design sensitivity in the strain, for the near future VIRGO+ interferometer, of h<210231Hzh<2\cdot10^{-23} \frac{1}{\sqrt{\rm Hz}} in the range 40 Hz 400- 400 Hz leads to a variable dipole magnet configuration at a frequency above 20 Hz such that B2D13000B^{2}D \ge 13000 T2^{2}m/Hz\sqrt{\rm Hz} for a `first' vacuum non linear QED detection

    Transient Polycomb activity represses developmental genes in growing oocytes

    Get PDF
    Published online: 21 December 2022BACKGROUND: Non-genetic disease inheritance and offspring phenotype are substantially influenced by germline epigenetic programming, including genomic imprinting. Loss of Polycomb Repressive Complex 2 (PRC2) function in oocytes causes non-genetically inherited effects on offspring, including embryonic growth restriction followed by post-natal offspring overgrowth. While PRC2-dependent non-canonical imprinting is likely to contribute, less is known about germline epigenetic programming of non-imprinted genes during oocyte growth. In addition, de novo germline mutations in genes encoding PRC2 lead to overgrowth syndromes in human patients, but the extent to which PRC2 activity is conserved in human oocytes is poorly understood. RESULTS: In this study, we identify a discrete period of early oocyte growth during which PRC2 is expressed in mouse growing oocytes. Deletion of Eed during this window led to the de-repression of 343 genes. A high proportion of these were developmental regulators, and the vast majority were not imprinted genes. Many of the de-repressed genes were also marked by the PRC2-dependent epigenetic modification histone 3 lysine 27 trimethylation (H3K27me3) in primary-secondary mouse oocytes, at a time concurrent with PRC2 expression. In addition, we found H3K27me3 was also enriched on many of these genes by the germinal vesicle (GV) stage in human oocytes, strongly indicating that this PRC2 function is conserved in the human germline. However, while the 343 genes were de-repressed in mouse oocytes lacking EED, they were not de-repressed in pre-implantation embryos and lost H3K27me3 during pre-implantation development. This implies that H3K27me3 is a transient feature that represses a wide range of genes in oocytes. CONCLUSIONS: Together, these data indicate that EED has spatially and temporally distinct functions in the female germline to repress a wide range of developmentally important genes and that this activity is conserved in the mouse and human germlines.Ellen G. Jarred, Zhipeng Qu, Tesha Tsai, Ruby Oberin, Sigrid Petautschnig, Heidi Bildsoe, Stephen Pederson, Qing, hua Zhang, Jessica M. Stringer, John Carroll, David K. Gardner, Maarten Van den Buuse, Natalie A. Sims, William T. Gibson, David L. Adelson and Patrick S. Wester

    Pion, kaon, proton and anti-proton transverse momentum distributions from p+p and d+Au collisions at sNN=200\sqrt{s_{NN}} = 200 GeV

    Full text link
    Identified mid-rapidity particle spectra of π±\pi^{\pm}, K±K^{\pm}, and p(pˉ)p(\bar{p}) from 200 GeV p+p and d+Au collisions are reported. A time-of-flight detector based on multi-gap resistive plate chamber technology is used for particle identification. The particle-species dependence of the Cronin effect is observed to be significantly smaller than that at lower energies. The ratio of the nuclear modification factor (RdAuR_{dAu}) between protons (p+pˉ)(p+\bar{p}) and charged hadrons (hh) in the transverse momentum range 1.2<pT<3.01.2<{p_{T}}<3.0 GeV/c is measured to be 1.19±0.051.19\pm0.05(stat)±0.03\pm0.03(syst) in minimum-bias collisions and shows little centrality dependence. The yield ratio of (p+pˉ)/h(p+\bar{p})/h in minimum-bias d+Au collisions is found to be a factor of 2 lower than that in Au+Au collisions, indicating that the Cronin effect alone is not enough to account for the relative baryon enhancement observed in heavy ion collisions at RHIC.Comment: 6 pages, 4 figures, 1 table. We extended the pion spectra from transverse momentum 1.8 GeV/c to 3. GeV/
    corecore