47 research outputs found

    The geology and geophysics of Kuiper Belt object (486958) Arrokoth

    Get PDF
    The Cold Classical Kuiper Belt, a class of small bodies in undisturbed orbits beyond Neptune, are primitive objects preserving information about Solar System formation. The New Horizons spacecraft flew past one of these objects, the 36 km long contact binary (486958) Arrokoth (2014 MU69), in January 2019. Images from the flyby show that Arrokoth has no detectable rings, and no satellites (larger than 180 meters diameter) within a radius of 8000 km, and has a lightly-cratered smooth surface with complex geological features, unlike those on previously visited Solar System bodies. The density of impact craters indicates the surface dates from the formation of the Solar System. The two lobes of the contact binary have closely aligned poles and equators, constraining their accretion mechanism

    Thermal Evolution and Magnetic Field Generation in Terrestrial Planets and Satellites

    Full text link

    Insights into Planet Formation from Debris Disks

    Get PDF

    Interior composition, structure and dynamics of the Galilean satellites

    No full text
    Gravitational fiels of the satellites: flyby determination of C22, gravity results; Io, Europa, Ganymede, Callisto - interior models; Thermal considerations in the maintenance of intra-ice oceans on the icy Galilean satellites: melting relations, energy balances and equilibrium models, the probability of oceans and their thicknesses; Formation of the Galilean satellites

    Evolution of icy satellites

    No full text
    Evolutionary scenarios for the major satellites of Jupiter, Saturn, Neptune, and Pluto-Charon are discussed. In the Jovian system the challenge is to understand how the present Laplace resonance of Io, Europa, and Ganymede was established and to determine whether the heat being radiated by Io is in balance with the present tidal dissipation in the moon. In the Saturnian system, Enceladus and Titan are the centers of attention. Tidal heating is the likely source of activity at the south pole of Enceladus, although the details of how the heating occurs are not understood. An evolutionary scenario based on accretion and internal differentiation is presented for Titan, whose present substantial orbital eccentricity is not associated with any dynamical resonance. The source and maintenance of methane in Titan’s present atmosphere remain uncertain. Though most attention on the Saturnian moons focuses on Titan and Enceladus, the mid-size satellites Iapetus, Rhea, Tethys, and the irregular satellite Phoebe also draw our interest. An evolutionary scenario for Iapetus is presented in which spin down from an early rapidly rotating state is called upon to explain the satellite’s present oblate shape. The prominent equatorial ridge on Iapetus is unexplained by the spin down scenario. A buckling instability provides another possible explanation for the oblateness and equatorial ridge of Iapetus. Rhea is the only medium-size Saturnian satellite for which there are gravity data at present. The interpretation of these data are uncertain, however, since it is not known if Rhea is in hydrostatic equilibrium. Pluto and Charon are representative of the icy dwarf planets of the Kuiper belt. Did they differentiate as they evolved, and do either of them have a subsurface liquid water ocean? New Horizons might provide some answers when it arrives at these bodies

    Modeling glacial flow on and onto Pluto’s Sputnik Planitia

    No full text
    Observations of Pluto's surface made by the New Horizons spacecraft indicate present-day N2 ice glaciation in and around the basin informally known as Sputnik Planitia. Motivated by these observations, we have developed an evolutionary glacial flow model of solid N2 ice that takes into account its published thermophysical and rheological properties. This model assumes that glacial ice flows laminarly and has a low aspect ratio which permits a vertically integrated mathematical formulation. We assess the conditions for the validity of laminar N2 ice motion by revisiting the problem of the onset of solid-state buoyant convection of N2 ice for a variety of bottom thermal boundary conditions. Subject to uncertainties in N2 ice rheology, N2 ice layers are estimated to flow laminarly for thicknesses less than 400–1000 m. The resulting mass-flux formulation for when the N2 ice flows as a laminar dry glacier is characterized by an Arrhenius–Glen functional form. The flow model developed is used here to qualitatively answer some questions motivated by features we interpret to be a result of glacial flow found on Sputnik Planitia. We find that the wavy transverse dark features found along the northern shoreline of Sputnik Planitia may be a transitory imprint of shallow topography just beneath the ice surface suggesting the possibility that a major shoreward flow event happened relatively recently, within the last few hundred years. Model results also support the interpretation that the prominent darkened features resembling flow lobes observed along the eastern shoreline of the Sputnik Planitia basin may be the result of a basally wet N2 glacier flowing into the basin from the pitted highlands of eastern Tombaugh Regio

    The Europa Clipper Gravity and Radio Science Investigation

    Get PDF
    The primary objective of the Europa Clipper mission is to assess the habitability of Europa, an overarching goal that rests on improving our understanding of Europa's interior structure, composition, and geologic activity. Here we describe the Gravity and Radio Science (G/RS) investigation. The primary measurement, the gravitational tidal Love number k(2), will be an independent diagnostic of the presence of a global subsurface ocean, but G/RS will make a number of other key measurements related to Europa's deep interior, silicate mantle-ocean interface, ice shell, ionosphere, and plasma environment. Although radio science is common to many missions, Europa Clipper's orbit and spacecraft configuration during flybys present special challenges for the design of this experiment. The information obtained through G/RS will be complementary to the measurements by the other instruments onboard Europa Clipper, and their combined analysis will refine the geophysical understanding of Europa necessary to best assess its potential habitability

    Triton: Topography and geology of a probable ocean world with comparison to pluto and charon

    No full text
    The topography of Neptune’s large icy moon Triton could reveal important clues to its internal evolution, but has been difficult to determine. New global digital color maps for Triton have been produced as well as topographic data for <40% of the surface using stereogrammetry and photoclinometry. Triton is most likely a captured Kuiper Belt dwarf planet, similar though slightly larger in size and density to Pluto, and a likely ocean moon that exhibited plume activity during Voyager 2â€Č s visit in 1989. No surface features or regional deviations of greater than ±1 km amplitude are found. Volatile ices in the southern terrains may take the form of extended lobate deposits 300–500 km across as well as dispersed bright materials that appear to embay local topography. Limb hazes may correlate with these deposits, indicating possible surface–atmosphere exchange. Triton’s topography contrasts with high relief up to 6 km observed by New Horizons on Pluto. Low relief of (cryo)volcanic features on Triton contrasts with high-standing massifs on Pluto, implying different viscosity materials. Solid-state convection occurs on both and at similar horizontal scales but in very different materials. Triton’s low relief is consistent with evolution of an ice shell subjected to high heat flow levels and may strengthen the case of an internal ocean on this active body. © 2021 by the authors. Licensee MDPI, Basel, Switzerland.Open access journalThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]
    corecore