8,570 research outputs found

    Fast computation of effective diffusivities using a semi-analytical solution of the homogenization boundary value problem for block locally-isotropic heterogeneous media

    Full text link
    Direct numerical simulation of diffusion through heterogeneous media can be difficult due to the computational cost of resolving fine-scale heterogeneities. One method to overcome this difficulty is to homogenize the model by replacing the spatially-varying fine-scale diffusivity with an effective diffusivity calculated from the solution of an appropriate boundary value problem. In this paper, we present a new semi-analytical method for solving this boundary value problem and computing the effective diffusivity for pixellated, locally-isotropic, heterogeneous media. We compare our new solution method to a standard finite volume method and show that equivalent accuracy can be achieved in less computational time for several standard test cases. We also demonstrate how the new solution method can be applied to complex heterogeneous geometries represented by a grid of blocks. These results indicate that our new semi-analytical method has the potential to significantly speed up simulations of diffusion in heterogeneous media.Comment: 29 pages, 4 figures, 5 table

    Cyst of the Brain

    Get PDF
    n/

    On the controversy concerning the definition of quark and gluon angular momentum

    Full text link
    A major controversy has arisen in QCD as to how to split the total angular momentum into separate quark and gluon contributions, and as to whether the gluon angular momentum can itself be split, in a gauge invariant way, into a spin and orbital part. Several authors have proposed various answers to these questions and offered a variety of different expressions for the relevant operators. I argue that none of these is acceptable and suggest that the canonical expression for the momentum and angular momentum operators is the correct and physically meaningful one. It is then an inescapable fact that the gluon angular momentum operator cannot, in general, be split in a gauge invariant way into a spin and orbital part. However, the projection of the gluon spin onto its direction of motion i.e. its helicity is gauge invariant and is measured in deep inelastic scattering on nucleons. The Ji sum rule, relating the quark angular momentum to generalized parton distributions, though not based on the canonical operators, is shown to be correct, if interpreted with due care. I also draw attention to several interesting aspects of QED and QCD, which, to the best of my knowledge, are not commented upon in the standard textbooks on Field Theory.Comment: 41 pages; Some incorrect statements have been rectified and a detailed discussion has been added concerning the momentum carried by quarks and the Ji sum rule for the angular momentu

    Double Charge Exchange And Configuration Mixing

    Full text link
    The energy dependence of forward pion double charge exchange reactions on light nuclei is studied for both the Ground State transition and the Double-Isobaric-Analog-State transitions. A common characteristic of these double reactions is a resonance-like peak around 50 MeV pion lab energy. This peak arises naturally in a two-step process in the conventional pion-nucleon system with proper handling of nuclear structure and pion distortion. A comparison among the results of different nuclear structure models demonstrates the effects of configuration mixing. The angular distribution is used to fix the single particle wave function.Comment: Added 1 figure (now 8) corrected references and various other change

    Achievement goals, self-handicapping, and performance: A 2 × 2 achievement goal perspective

    Get PDF
    Elliot and colleagues (2006) examined the effects of experimentally induced achievement goals, proposed by the trichotomous model, on self-handicapping and performance in physical education. Our study replicated and extended the work of Elliot et al. by experimentally promoting all four goals proposed by the 262 model (Elliot & McGregor, 2001), measuring the participants’ own situational achievement goals, using a relatively novel task, and testing the participants in a group setting. We used a randomized experimental design with four conditions that aimed to induce one of the four goals advanced by the 262 model. The participants (n¼138) were undergraduates who engaged in a dart-throwing task. The results pertaining to self-handicapping partly replicated Elliot and colleagues’ findings by showing that experimentally promoted performance-avoidance goals resulted in less practice. In contrast, the promotion of mastery-avoidance goals did not result in less practice compared with either of the approach goals. Dart-throwing performance did not differ among the four goal conditions. Personal achievement goals did not moderate the effects of experimentally induced goals on selfhandicapping and performance. The extent to which mastery-avoidance goals are maladaptive is discussed, as well as the interplay between personal and experimentally induced goals

    Buoyancy waves in Pluto's high atmosphere: Implications for stellar occultations

    Get PDF
    We apply scintillation theory to stellar signal fluctuations in the high-resolution, high signal/noise, dual-wavelength data from the MMT observation of the 2007 March 18 occultation of P445.3 by Pluto. A well-defined high wavenumber cutoff in the fluctuations is consistent with viscous-thermal dissipation of buoyancy waves (internal gravity waves) in Pluto's high atmosphere, and provides strong evidence that the underlying density fluctuations are governed by the gravity-wave dispersion relation.Comment: Accepted 18 June 2009 for publication in Icaru

    Commensurate and modulated magnetic phases in orthorhombic A1C60

    Full text link
    Competing magnetically ordered structures in polymerized orthorhombic A1C60 are studied. A mean-field theory for the equilibrium phases is developed using an Ising model and a classical Heisenberg model to describe the competition between inter- and intra-chain magnetic order in the solid. In the Ising model, the limiting commensurate one-dimensional and three-dimensional phases are separated by a commensurate three-sublattice state and by two sectors containing higher-order commensurate phases. For the Heisenberg model the quasi-1D phase is never the equilibrium state; instead the 3D commensurate phases exhibits a transition to a continuum of coplanar spiral magnetic phases.Comment: 11 pages REVTeX 3.0 plus 4 figures appende

    Pluto-Charon Stellar Occultation Candidates: 1990-1995

    Get PDF
    We have carried out a search to identify stars that might be occulted by Pluto or Charon during the period 1990-1995 and part of 1996. This search was made with an unfiltered CCD camera operated in the strip scanning mode, and it reaches an R magnitude of approximately 17.5-about 1.5 mag fainter than previous searches. Circumstances for each of the 162 potential occultations are given, including an approximate R magnitude of the star, which allows estimation of the signal-to-noise ratio (S/N) for observation of each occultation. The faintest stars in our list would yield an S/N of about 20 for a 1 S integration when observed with a CCD detector on an 8 m telescope under a dark sky. Our astrometric precision (+/- 0.2 arcsec, with larger systematic errors possible for individual cases) is insufficient to serve as a final prediction for these potential occultations, but is sufficient to identify stars deserving of further, more accurate, astrometric observations. Statistically, we expect about 32 of these events to be observable somewhere on Earth. The number of events actually observed will be substantially smaller because of clouds and the sparse distribution of large telescopes. Finder charts for each of the 91 stars involved are presented
    • …
    corecore