228 research outputs found
Thrusting, folding and stratigraphy of the Ghaap Group along the southwestern margin of the Kaapvaal Craton South African Journal of Geology, Aug 1990; 93: 553 - 566.
Structural history of the southwestern corner of the Kaapvaal Craton and the adjacent Namaqua realm: new observations and a reappraisal
The rocks along the southwestern margin of the Kaapvaal Craton were deformed up to 7 times during the Early to Middle Proterozoic. The oldest deformation D1 is recorded in the N-S-trending Uitkoms cataclasite of pre-Makganyene age (>2.24 Ga) on the craton, and interpreted as a bedding-parallel thrust. It is assumed to be a branch rising towards the surface from a blind sole thrust that initiated early N-S-trending F,-folds above it. D2 is represented by mainly N-S but also NE-SW and NW-SE-trending imbricates and recumbent fold zones ranging in size from small gravity slumps to large tectonic decollements in Asbesheuwel BIF and the Koegas Subgroup, and is younger than D1, or equals D1 in age. These age. These structures pre-date the Westerberg dyke-sheet intrusion. D3 south-verging folds and thrusts are the oldest post-Matsap deformations, just less than 2.07-1.88 Ga. D4 are upright to east vergent and N-S-trending folds deforming all previous structures. D4 post-dates the Westerberg dyke-sheet and probably reactivates N-S folds above the earlier sole thrust during renewed E-W compression. D5, producing the main NW-trending Namaqua structures, is only very feebly developed in the Kheis terrain and absent from the cratonic areas overlain by Olifantshoek and older strata, i.e. NE, E and SE of the Marydale High. Very gentle D6 E-W to ENE-WSW folds produce culminations and depressions in all NW-trending older structures. During D7 the NW-SE-trending Doornberg Lineament, an oblique left-lateral wrench, and smaller N-trending faults such as the Westerberg Fault developed. These and similar, but right-lateral faults are the last movements along the rim of the craton and occurred around 1.0 Ga.
Multiple folding and thrusting with riebeckite mobilization happened prior to Namaqua events and resulted inter alia in discernable duplication and thickening of the Transvaal Supergroup along the southwestern margin of the Kaapvaal Craton and at least some 130 km into the craton interior. This complicates stratigraphic correlation as well as true thickness estimates of BIF units in Griqualand West, and affects the model for the environmental evolution of the Ghaap Group. A structural model of thin-skin decoupling at the base of the Transvaal Supergroup and starting in the Middle-Early Proterozoic is proposed
A carbonate-banded iron formation transition in the Early Protorezoicum of South Africa
Seven new and two resurveyed stratigraphic sections through the important carbonate-BIF transition in Griqualand West are presented and compared with six published sections. Lateral correlation within this zone is attempted but the variability was found to be too great for meaningful subdivision. Substantial lithological irregularity is the only unifying character of this zone, for which the new name Finsch Member (Formation) is proposed. Vertical and lateral lithological variations as well as chemical changes across this zone are discussed with reference to environmental aspects. Local and regional considerations lead to the conclusion that fresh water-sea water mixing occurred in a shallowing basin
Tidal flat deposits of the Lower Proterozoic Campbell Group along the southwestern margin of the Kaapvaal Craton, Northern Cape Province, South Africa
Lower Proterozoic stromatolites and associated clastic carbonate deposits of the Campbell Group, from the southern margin (Prieska area) of the Kaapvaal Craton, northern Cape Province, are described. Contrary to previous interpretations (Beukes, 1978; 1980a) shallow subtidal to supratidal facies are recognised and discussed in regional context. An alternative model for the facies development of the Campbell Group is proposed
Structural history of the southwestern corner of the Kaapvaal Craton and the adjacent Namaqua realm: new observations and a reappraisal
The rocks along the southwestern margin of the Kaapvaal Craton were deformed up to 7 times during the Early to Middle Proterozoic. The oldest deformation D1 is recorded in the N-S-trending Uitkoms cataclasite of pre-Makganyene age (>2.24 Ga) on the craton, and interpreted as a bedding-parallel thrust. It is assumed to be a branch rising towards the surface from a blind sole thrust that initiated early N-S-trending F,-folds above it. D2 is represented by mainly N-S but also NE-SW and NW-SE-trending imbricates and recumbent fold zones ranging in size from small gravity slumps to large tectonic decollements in Asbesheuwel BIF and the Koegas Subgroup, and is younger than D1, or equals D1 in age. These age. These structures pre-date the Westerberg dyke-sheet intrusion. D3 south-verging folds and thrusts are the oldest post-Matsap deformations, just less than 2.07-1.88 Ga. D4 are upright to east vergent and N-S-trending folds deforming all previous structures. D4 post-dates the Westerberg dyke-sheet and probably reactivates N-S folds above the earlier sole thrust during renewed E-W compression. D5, producing the main NW-trending Namaqua structures, is only very feebly developed in the Kheis terrain and absent from the cratonic areas overlain by Olifantshoek and older strata, i.e. NE, E and SE of the Marydale High. Very gentle D6 E-W to ENE-WSW folds produce culminations and depressions in all NW-trending older structures. During D7 the NW-SE-trending Doornberg Lineament, an oblique left-lateral wrench, and smaller N-trending faults such as the Westerberg Fault developed. These and similar, but right-lateral faults are the last movements along the rim of the craton and occurred around 1.0 Ga.
Multiple folding and thrusting with riebeckite mobilization happened prior to Namaqua events and resulted inter alia in discernable duplication and thickening of the Transvaal Supergroup along the southwestern margin of the Kaapvaal Craton and at least some 130 km into the craton interior. This complicates stratigraphic correlation as well as true thickness estimates of BIF units in Griqualand West, and affects the model for the environmental evolution of the Ghaap Group. A structural model of thin-skin decoupling at the base of the Transvaal Supergroup and starting in the Middle-Early Proterozoic is proposed
Analysis of evolutionary patterns of genes in Campylobacter jejuni and C. coli
BACKGROUND: The thermophilic Campylobacter jejuni and Campylobacter coli are considered weakly clonal populations where incongruences between genetic markers are assumed to be due to random horizontal transfer of genomic DNA. In order to investigate the population genetics structure we extracted a set of 1180 core gene families (CGF) from 27 sequenced genomes of C. jejuni and C. coli. We adopted a principal component analysis (PCA) on the normalized evolutionary distances in order to reveal any patterns in the evolutionary signals contained within the various CGFs. RESULTS: The analysis indicates that the conserved genes in Campylobacter show at least two, possibly five, distinct patterns of evolutionary signals, seen as clusters in the score-space of our PCA. The dominant underlying factor separating the core genes is the ability to distinguish C. jejuni from C. coli. The genes in the clusters outside the main gene group have a strong tendency of being chromosomal neighbors, which is natural if they share a common evolutionary history. Also, the most distinct cluster outside the main group is enriched with genes under positive selection and displays larger than average recombination rates. CONCLUSIONS: The Campylobacter genomes investigated here show that subsets of conserved genes differ from each other in a more systematic way than expected by random horizontal transfer, and is consistent with differences in selection pressure acting on different genes. These findings are indications of a population of bacteria characterized by genomes with a mixture of evolutionary patterns
Complete Genome Sequence of Lactobacillus fermentum Strain AGR1485, a Human Oral Isolate.
Lactobacillus fermentum is found in food products and is generally considered safe. L. fermentum AGR1485 promotes barrier integrity in Caco-2 cells and has genetic similarities to other known probiotic L. fermentum strains. L. fermentum AGR1485 has potential as a probiotic and was sequenced to explore these probiotic properties. The genome is a 2.2-Mbp circular chromosome with no plasmids and a GC content of 51.15%.fals
An identity crisis solved by U-Pb dating: the case of the Cederberg dyke swarm, Western and Northern Capes, South Africa
Tailored Nanoparticles With the Potential to Reduce Ruminant Methane Emissions.
Agricultural methane produced by archaea in the forestomach of ruminants is a key contributor to rising levels of greenhouse gases leading to climate change. Functionalized biological polyhydroxybutyrate (PHB) nanoparticles offer a new concept for the reduction of enteric methane emissions by inhibiting rumen methanogens. Nanoparticles were functionalized in vivo with an archaeal virus lytic enzyme, PeiR, active against a range of rumen Methanobrevibacter species. The impact of functionalized nanoparticles against rumen methanogens was demonstrated in pure cultures, in rumen batch and continuous flow rumen models yielding methane reduction of up to 15% over 11 days in the most complex system. We further present evidence of biological nanoparticle fermentation in a rumen environment. Elevated levels of short-chain fatty acids essential to ruminant nutrition were recorded, giving rise to a promising new strategy combining methane mitigation with a possible increase in animal productivity.fals
- …
