693 research outputs found
A numerical solution to the stability of a slope
A numerical solution to Lowe\u27s graphical method of slope stability analysis which is based on limit equilibrium is presented. Both a dimensional and dimensionless solution are discussed and formulated in detail. A computer solution to the trial and error procedure used to determine the factor of safety is outlined. An explanation of the meaning and significance of the factor of safety in slope stability analyses is included
Recommended from our members
Benzotriazole is antiestrogenic in vitro but not in vivo
Copyright © 2007 SETAC. This is the accepted version of the following article: Harris et al (2007), "Benzotriazole is antiestrogenic in vitro but not in vivo", Environmental Toxicology and Chemistry, 26(11), 2367–2372, which has been published in final form at the link below.Benzotriazole (BT) is an anticorrosive agent well known for its use in aircraft deicing and antifreeze fluids but also used in dishwasher detergents. It is highly persistent in the environment; therefore, BT is frequently found in runoff emanating from large airports as well as in the surrounding groundwater. In addition, BT has recently been found to be ubiquitous in Swiss wastewater treatment plant effluents and their receiving waters; however, very little chronic toxicity data is available on which to base a sound ecological risk assessment of this chemical. In vitro assays conducted using a recombinant yeast (anti-) estrogen assay indicated that BT possessed clear antiestrogenic properties. This chemical was approximately 100-fold less potent than Tamoxifen, which was used as a positive control. A subsequent in vivo study, however, involving analysis of vitellogenin induction and somatic indices in adult fathead minnows (Pimephales promelas) exposed to BT at concentrations of 10, 100, and 1,000 μg/L for two weeks showed no evidence of antiestrogenic activity by this compound. The possibility exists that higher concentrations of BT may yet induce the type of activity observed in vitro, although the concentrations used here already far exceed those reported in surface-water samples. Furthermore, adverse effects may be observed in fish or other organisms exposed to BT for a longer period than employed here, although such studies are costly and unlikely to be included in standard risk assessment procedures. A rigorous investigation of the chronic toxicity of BT is imperative
Carrier Detection of Ovine Hemophilia A Using an RFLP Marker, and Mapping of the Factor VIII Gene on the Ovine X-Chromosome
Ovine hemophilia A is an X-linked recessive bleeding disorder. For diagnostic purposes, restriction fragment length polymorphism (RFLP) analysis in the region of the factor VIII (F-VIII) gene was carried out using human F-VIII gene probes. The probe St14, Known to detect a highly polymorphic region that is closely linked to the F-VIII gene in humans, hybridized nonspecifcally with DNA from sheep. Searching for Intragenic RFLPs, the entire 9.0-kb coding sequence of the human F-VIII was used as a probe. Using the 1.8-kb Sstl/Kpnl F-VIII cDNA probe for hybridization, an Mspl-RFLP with allelic bands of 5.8 Kb (A1) and 4.2 kb (A2) was detected. A1 was in linkage phase with the mutated allele responsible for hemophilia A. The F-VIII locus in the sheep genome was assigned to the long arm of the X-chromosome in the region Xq24-q33, Using In situ hybridization with a 3-Kb human F-VIII cDNA probe to QFQ banded sheep metaphase chromosome
INVESTIGATION OF ARSENIC CONTAMINATION IN GROUNDWATER IN HANOI AREA
Joint Research on Environmental Science and Technology for the Eart
Occurrence and temporal variations of TMDD in the river Rhine, Germany
Background, aim, and scope: The chemical substance 2,4,7,9-tetramethyl-5-decyne-4,7-diol (TMDD) is a non-ionic surfactant used as an industrial defoaming agent and in various other applications. Its commercial name is Surynol 104® and the related ethoxylates are also available as Surfynol® 420, 440, 465 and 485 which are characterized by different grades of ethoxylation of TMDD at both hydroxyl functional groups. TMDD and its ethoxylates offer several advantages in waterborne industrial applications in coatings, inks, adhesives as well as in paper industries. TMDD and its ethoxylates can be expected to reach the aquatic environment due its widespread use and its physico-chemical properties. TMDD has previously been detected in several rivers of Germany with concentrations up to 2.5 µg/L. In the United States, TMDD was also detected in drinking water. However, detailed studies about its presence and distribution in the aquatic environment have not been carried out so far. The aim of the present study was the analysis of the spatial and temporal concentration variations of TMDD in the river Rhine at the Rheingütestation Worms (443.3 km). Moreover, the transported load in the Rhine was investigated during two entire days and 7 weeks between November 2007 and January 2008.
Materials and methods: The sampling was carried out at three different sampling points across the river. Sampling point MWL1 is located in the left part of the river, MWL2 in the middle part, and MWL4 in the right part. One more sampling site (MWL3) was run by the monitoring station until the end of 2006, but was put out of service due to financial constrains. The water at the left side of the river Rhine (MWL1) is influenced by sewage from a big chemical plant in Ludwigshafen and by the sewage water from this city. The water at the right side of the river Rhine (MWL4) is largely composed of the water inflow from river Neckar, discharging into Rhine 14.9 km upstream from the sampling point and of communal and industrial wastewater from the city Mannheim. The water from the middle of the river (MWL2) is largely composed of water from the upper Rhine. Water samples were collected in 1-L bottles by an automatic sampler. The water samples were concentrated by use of solid-phase extraction (SPE) using Bond Elut PPL cartridges and quantified by use of gas chromatography-mass spectrometry (GC-MS). The quantification was carried out with the internal standard method. Based on these results, concentration variations were determined for the day profiles and week profiles. The total number of analyzed samples was 219.
Results: The results of this study provide information on the temporal concentration variability of TMDD in river Rhine in a cross section at one particular sampling point (443.3 km). TMDD was detected in all analyzed water samples at high concentrations. The mean concentrations during the 2 days were 314 ng/L in MWL1, 246 ng/L in MWL2, and 286 ng/L in MWL4. The variation of concentrations was low in the day profiles. In the week profiles, a trend of increasing TMDD concentrations was detected particularly in January 2008, when TMDD concentrations reached values up to 1,330 ng/L in MWL1. The mean TMDD concentrations during the week profiles were 540 ng/L in MWL1, 484 ng/L in MWL2, and 576 ng/L in MWL4. The loads of TMDD were also determined and revealed to be comparable in all three sections of the river. The chemical plant located at the left side of the Rhine is not contributing additional TMDD to the river. The load of TMDD has been determined to be 62.8 kg/d on average during the entire period. By extrapolation of data obtained from seven week profiles the annual load was calculated to 23 t/a.
Discussion: The permanent high TMDD concentrations during the investigation period indicate an almost constant discharge of TMDD into the river. This observation argues for effluents of municipal wastewater treatment plants as the most likely source of TMDD in the river. Another possible source might be the degradation of ethoxylates of TMDD (Surfynol® series 400), in the WWTPs under formation of TMDD followed by discharge into the river. TMDD has to be considered as a high-production-volume (HPV) chemical based on the high concentrations found in this study. In the United States, TMDD is already in the list of HPV chemicals from the Environmental Protection Agency (EPA). However, the amount of TMDD production in Europe is unknown so far and also the biodegradation rates of TMDD in WWTPs have not been investigated.
Conclusions: TMDD was found in high concentrations during the entire sampling period in the Rhine river at the three sampling points. During the sampling period, TMDD concentrations remained constant in each part of the river. These results show that TMDD is uniformly distributed in the water collected at three sampling points located across the river. ‘Waves’ of exceptionally high concentrations of TMDD could not be detected during the sampling period. These results indicate that the effluents of WWTPs have to be considered as the most important sources of TMDD in river Rhine.
Recommendations and perspectives: Based also on the occurrence of TMDD in different surface waters of Germany with concentrations up to 2,500 ng/L and its presence in drinking water in the USA, more detailed investigations regarding its sources and distribution in the aquatic environment are required. Moreover, the knowledge with respect to its ecotoxicity and its biodegradation pathway is scarce and has to be gained in more detail. Further research is necessary to investigate the rate of elimination of TMDD in municipal and industrial wastewater treatment plants in order to clarify the degradation rate of TMDD and to determine to which extent effluents of WWTPs contribute to the input of TMDD into surface waters. Supplementary studies are needed to clarify whether the ethoxylates of TMDD (known as Surfynol 400® series) are hydrolyzed in the aquatic environment resulting in formation of TMDD similar to the well known cleavage of nonylphenol ethoxylates into nonylphenols. The stability of TMDD under anaerobic conditions in groundwater is also unknown and should be studied
Inheritance, Biochemical Abnormalities, and Clinical Features of Feline Mucolipidosis II: The First Animal Model of Human I-Cell Disease
Mucolipidosis II (ML II), also called I-cell disease, is a unique lysosomal storage disease caused by deficient activity of the enzyme N-acetylglucosamine-1-phosphotransferase, which leads to a failure to internalize enzymes into lysosomes. We report on a colony of domestic shorthair cats with ML II that was established from a half-sibling male of an affected cat. Ten male and 9 female kittens out of 89 kittens in 26 litters born to clinically normal parents were affected; this is consistent with an autosomal recessive mode of inheritance. The activities of three lysosomal enzymes from affected kittens, compared to normal adult control cats, were high in serum (11-73 times normal) but low in cultured fibroblasts (9-56% of normal range) that contained inclusion bodies (I-cells), reflecting the unique enzyme defect in ML II. Serum lysosomal enzyme activities of adult obligate carriers were intermediate between normal and affected values. Clinical features in affected kittens were observed from birth and included failure to thrive, behavioral dullness, facial dysmorphia, and ataxia. Radiographic lesions included metaphyseal flaring, radial bowing, joint laxity, and vertebral fusion. In contrast to human ML II, diffuse retinal degeneration leading to blindness by 4 months of age was seen in affected kittens. All clinical signs were progressive and euthanasia or death invariably occurred within the first few days to 7 months of life, often due to upper respiratory disease or cardiac failure. The clinical and radiographic features, lysosomal enzyme activities, and mode of inheritance are homologous with ML II in humans. Feline ML II is currently the only animal model in which to study the pathogenesis of and therapeutic interventions for this unique storage diseas
A critical review of the formation of mono- and dicarboxylated metabolic intermediates of alkylphenol polyethoxylates during wastewater treatment and their environmental significance
This is the author's accepted manuscript. The final published article is available from the link below. Copyright @ 2010 Taylor & Francis.Alkylphenoxyacetic acids, the metabolic biodegradation products of alkylphenol ethoxylates, are commonly found in wastewaters and sewage effluents. These persistent hydrophilic derivatives possess intrinsic estrogenic activity, which can mimic natural hormones. Their concentrations increase through the sewage treatment works as a result of biodegradation and biotransformation, and when discharged can disrupt endocrine function in fish. These acidic metabolites represent the dominant alkylphenolic compounds found in wastewater effluent and their presence is cause for concern as, potentially, through further biotransformation and biodegradation, they can act as sources of nonylphenol, which is toxic and estrogenic. The authors aim to assess the mechanisms of formation as well as elimination of alkylphenoxyacetic acids within conventional sewage treatment works with the emphasis on the activated sludge process. In addition, they evaluate the various factors influencing their degradation and formation in laboratory scale and full-scale systems. The environmental implications of these compounds are considered, as is the need for tertiary treatment processes for their removal
Influence of operating parameters on the biodegradation of steroid estrogens and nonylphenolic compounds during biological wastewater treatment processes
This document is the unedited author's version of a Submitted Work that was subsequently accepted for
publication in Environmental Science & Technology, copyright © American Chemical Society after peer
review. To access the final edited and published work see http://pubs.acs.org/doi/abs/10.1021/es901612v.This study investigated operational factors influencing the removal of steroid estrogens and nonylphenolic compounds in two sewage treatment works, one a nitrifying/denitrifying activated sludge plant and the other a nitrifying/denitrifying activated sludge plant with phosphorus removal. Removal efficiencies of >90% for steroid estrogens and for longer chain nonylphenol ethoxylates (NP4−12EO) were observed at both works, which had equal sludge ages of 13 days. However, the biological activity in terms of milligrams of estrogen removed per day per tonne of biomass was found to be 50−60% more efficient in the nitrifying/denitrifying activated sludge works compared to the works which additionally incorporated phosphorus removal. A temperature reduction of 6 °C had no impact on the removal of free estrogens, but removal of the conjugated estrone-3-sulfate was reduced by 20%. The apparent biomass sorption (LogKp) values were greater in the nitrifying/denitrifying works than those in the nitrifying/denitrifying works with phosphorus removal for both steroid estrogens and nonylphenolic compounds possibly indicating a different cell surface structure and therefore microbial population. The difference in biological activity (mg tonne−1 d−1) identified in this study, of up to seven times, suggests that there is the potential for enhancing the removal of estrogens and nonylphenols if more detailed knowledge of the factors responsible for these differences can be identified and maximized, thus potentially improving the quality of receiving waters.Public Utilities Board (Singapore), Anglian Water Ltd, Severn Trent Water Ltd, Thames Water Utilities Ltd, United Utilities 393 Plc and Yorkshire Water Services
- …